PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 1 |

Tytuł artykułu

Anaerobic co-digestion of waste wafers from confectionery production with sewage sludge

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Food waste (FW) is generated in high volumes and is a serious threat to the environment if utilized improperly or left without control. Conventional methods of FW disposal include combustion, landfilling, aerobic composting, partial recycling, and other ones. Anaerobic digestion (AD) is the most environmentally friendly of all the methods as it is beneficial to the populace, and food waste is a suitable material for biogas production. Confectionery waste has rarely been utilized by anaerobic digestion (AD) so far. In this paper, the use of waste wafers (WF) in co-digestion with sewage sludge (SS) is proposed for the first time. Annual volumes of production of WW and SS are expressed in hundreds and thousands of tons, respectively. The materials are generated in high amounts and on an ongoing basis, which is a very important factor regarding potential biogas plant investment projects. The objective of this paper was to analyze the AD process of the test substrates in terms of process stability and biogas capacity. The studies have shown that both the waste wafers as the individual material and with sewage sludge (as the co-substrate) are suitable feedstocks for biogas production. The experiments were carried out for the individual material and for a system with a cosubstrate in the form of raw sewage sludge (SS). In both cases, a digested sewage sludge was used as the inoculum. The studies were performed in a laboratory scale using anaerobic batch reactors under controlled (mesophilic) temperature and pH conditions. The highest yields of biogas and methane were obtained for waste wafers (980.1 m³ Mg VS⁻¹ and 492.6 m³ Mg VS⁻¹, respectively) and the lowest for raw sewage sludge (349.1 m³ Mg⁻¹ VS and 177.9 m³ Mg⁻¹ VS, respectively). After mixed the wafers with the sewage sludge, the material (WF_SS) produced less biogas (667.9 m³ Mg⁻¹ VS), including methane (387.5 m³ Mg VS⁻¹), than for the wafers (WF). The differences in biogas production for the samples were primarily connected with the substrates’ composition, including with the content of readily degradable organic compounds and C/N ratio. The combination of waste wafers with raw sewage sludge has appeared to be beneficial, as evidenced by the results of microbiological and biochemical analyses. The sample WF_SS was rich in microorganisms with high metabolic activity, which resulted in the production of biogas with high methane content (58%).

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

1

Opis fizyczny

p.237-245,fig.,ref.

Twórcy

  • Institute of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 28, PL-60637 Poznan, Poland

Bibliografia

  • 1. MATA-ALVAREZ J., MACÉ S., LLABRÉS P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 74, 3, 2000.
  • 2. ZHANG C., SU H., BAEYENS J., TAN T. Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sust. Energ. Rev. 38, 383, 2014.
  • 3. APPELS L., ASSCHE A.V., WILLEMS K., DEGRÈVE J., IMPE J.V., DEWIL R. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge. Bioresour. Technol. 102, 4124, 2011.
  • 4. KNITTEL K., BOETIUS A. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311, 2009.
  • 5. SUWANNARAT J., RITCHIE R.J. Anaerobic digestion of food waste using yeast. Waste. Manage. 42, 61, 2015.
  • 6. ZESHAN M.J., YOUSAF S., HAIDER M.R., MALIK R.N. High-solids anaerobic co-digestion of food waste and rice husk at different organic loading rates. Int. Biodeter. Biodegr. 102, 149, 2015.
  • 7. RAZAVIARANI V., BUCHANAN I.D., MALIK S., KATALAMBULA H. Pilot-scale anaerobic co-digestion of municipal wastewater sludge with restaurant grease trap waste. J. Environ. Manage. 123, 26, 2013.
  • 8. MONTANÉS, R., PÉREZ M., SOLERA R. Anaerobic mesophilic co-digestion of sewage sludge and sugar beet pulp lixiviation in batch reactors: Effect of pH control. Chem. Eng. J. 255, 492, 2014.
  • 9. FANG C., BOE K., ANGELIDAKI I. Anaerobic codigestion of desugared molasses with cow manure; focusing on sodium and potassium inhibition. Bioresour. Technol. 102, 1005, 2011.
  • 10. PILARSKA A. A., PILARSKI K., WITASZEK K., WALISZEWSKA H., ZBOROWSKA M., WALISZEWSKA B., KOLASIŃSKI M., SZWARC-RZEPKA K. Treatment of dairy waste by anaerobic digestion with sewage sludge. Ecol. Chem. Eng. S. 23 (1), 99, 2016.
  • 11. SILVESTRE G., ILLA J., FERNÁNDEZ B., BONMATÍ A. Thermophilic anaerobic co-digestion of sewage sludge with grease waste: Effect of long chain fatty acids in the methane yield and its dewatering properties. Appl. Energy. 117, 87, 2014.
  • 12. NEVES L., OLIVEIRA R., ALVES M.M. Anaerobic codigestion of coffee waste and sewage sludge. Waste. Manage. 26, 176, 2006.
  • 13. DI MARIA F., SORDI A., CIRULLI G., MICALE C. Amount of energy recoverable from an existing sludge digester with the co-digestion with fruit and vegetable waste at reduced retention time. Appl. Energ. 150, 9, 2015.
  • 14. PILARSKA A.A., PILARSKI K., RYNIECKI A., TOMASZYK K., DACH J., MARUWKA-WOLNA A. Utilization of vegetable dumplings waste from industrial production by anaerobic digestion. Int. Agrophys. 31 (1), 93, 2017.
  • 15. LAFITTE-TROUQUÉ S., FORSTER C.F. Dual anaerobic co-digestion of sewage sludge and confectionery waste. Bioresour Technol. 71, 77, 2000.
  • 16. RUSÍN J., KAŠÁKOVÁ K., CHAMRÁDOVÁ K. Anaerobic digestion of waste wafer material from the confectionery production. Energy. 85, 194, 2015.
  • 17. PILARSKA A.A., PILARSKI K., WOLNA-MARUWKA A., TOMASZYK K. Anaerobic co-digestion of highly processed food waste with sewage sludge. Physicochemical and microbiological evaluation of the process. Chem. Ind. 195 (11), 2216, 2016.
  • 18. PILARSKA A., PILARSKI K., DACH J., WITASZEK K. Impact of organic additives on biogas efficiency of sewage sludge. Agric. Eng. 3, 139, 2014.
  • 19. BOROWSKI S. Co-digestion of the hydromechanically separated organic fraction of municipal solid waste with sewage sludge. J. Environ. Manage. 147, 87, 2015.
  • 20. NARTKER S., AMMERMANA M., AURANDT J., STOGSDIL M., HAYDEN, O., ANTLE C. Increasing biogas production from sewage sludge anaerobic co-digestion process by adding crude glycerol from biodiesel industry. Waste. Manage. 34, 2567, 2014.
  • 21. DONG B., LIU X., DAI L. Changes of heavy metal speciation during high-solid anaerobic digestion of sewage sludge. Bioresour. Technol. 131, 152, 2013.
  • 22. MUDHOO A., KUMAR S. Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. Int. J. Environ. Sci. Technol. 10, 1383, 2013.
  • 23. SOSNOWSKI P., KLEPACZ-SUELTA A., KACZOREK K., LEDAKOWICZ S. Kinetics investigations of methane co-fermentation of sewage sludge and organic fraction of municipal solid wastes. Bioresour. Technol. 99, 5731, 2008.
  • 24. NORM VDI 4630. Vergärung organischer Stoffe Substratcharakterisierung, Probenahme, Stoffdatenerhebung, Gärversuche [Fermentation of organic materials characterization of the substrate, sampling, collection of material data, fermentation tests]. Düsseldorf: Verein Deutscher Ingenieure – German Engineers Club, 2006.
  • 25. NORM DIN 38 414-S8. Bestimmung des Faulverhaltens (S8) Schlamm und Sedimente [Fermentation of organic materials – Characterisation of the substrate, sampling, collection of material data, fermentation tests]. Deutsches Institut für Normung, 1985.
  • 26. PILARSKA A.A., PILARSKI K., WALISZEWSKA B., ZBOROWSKA M., WITASZEK K., WALISZEWSKA H., KOLASIŃSKI M., SZWARC-RZEPKA K. Evaluation of bio-methane yields for high-energy organic waste and sewage sludge: a pilot-scale study for a wastewater treatment plant. Environ. Eng. Manage. J. accepted
  • 27. THALMANN A., Zur methodik der bestimmung der dehydrogenase aktivität in boden mittels triphenyltetrazoliumchlorid (TTC) [Methods of dehydrogenase activity determination with triphenyltetrazoliumchlorid (TTC)]. Landwirtsch. Forsch. 21, 249, 1968.
  • 28. CHEN Y., CHENG J.J., CREAMER K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 99, 4044, 2008.
  • 29. WAN C., ZHOU Q., FU G., LI Y. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease. Waste. Manage. 31, 1752, 2011.
  • 30. SILVESTRE G., RODRÍGUEZ-ABALDE A., FERNÁNDEZ B., FLOTATS X., BONMATÍ A. Biomass adaptation over anaerobic co-digestion of sewage sludge and trapped grease waste. Bioresour. Technol. 102, 6830, 2011.
  • 31. ZHU Z., HSUEH M., HE Q. Enhancing biomethanation of municipal waste sludge with grease trap waste as a cosubstrate. Renew Energy. 36, 1802, 2011.
  • 32. DEUBLEIN D., STEINHAUSER A. Biogas from waste and renewable resources. 2nd Ed., WILEY-VCH Verlag GmbH & Co KGaA, Weinheim, 151, 2011.
  • 33. POPOVAL T.P., ZAHARINOV B., MARINOVA-GARVANSKA S.M., BAYKOV B. Microbiological evaluation of sewage sludge in terms of possibilities of application in soil as a fertilizer. Int. J. Curr. Microbiol. App. Sci. 3 (9), 184, 2014.
  • 34. KUMAR S., ChAUDHURI S., MAITI S.K. Soil dehydrogenase enzyme activity in natural and mine soil – A review. Middle East J. Sci. Res. 13 (7), 898, 2013.
  • 35. WŁODARCZYK T., STĘPNIEWSKI W., BRZEZIŃSKA M. Dehydrogenase activity, redox potential, and emissions of carbon dioxide and nitrous oxide from Cambisols under flooding conditions. Biol. Fert. Soils. 36, 200, 2002.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c98cebf5-5823-41fb-8ba6-2736fc0e3f99
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.