PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 76 |

Tytuł artykułu

Genetic diversity of Lithuanian populations of Juniperus communis L. in relation to abiotic and biotic factors

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Juniperus communis L. is increasingly threatened in many parts of Europe, including the Baltic region. Our present study was aimed at evaluation of genetic diversity of J. communis populations of Lithuania. Fourteen selected populations differed in geography and habitats (coastal brown dunes covered with natural Scots pine forests, further referred as B; J. communis shrubs, F; transition mires and quaking bogs, D; subcontinental moss Scots pine forests, G; xero-thermophile fringes, E). Molecular variance was analyzed among populations (140 individuals, in total), employing 14 Inter Simple Sequence Repeat (ISSR) markers. Percentage of polymorphic loci differed between populations belonging to the different habitat type, being the highest for population representing habitat F (68.2%) and the lowest for populations D (42.9%). The data demonstrate the possibility to underestimate or overestimate this parameter if some habitat populations are bypassed. Means per population of Nei‘s gene diversity and Shannon‘s information indexes, were 0.158 and 0.239, respectively. Significant correlation between genetic and geographic distance of populations of J. communis was documented by Mantel test. Bayesian analysis of ISSR data has separated populations of Southern Lithuania from Northern part. Juniperus communis populations representing different habitats showed moderate interpopulation variance at ISSR loci. In ISSR-based dendrograms, individuals were correctly allocated to populations, even in case of populations growing in 0.5 km vicinity (habitats D and G). Among all populations the most distinct one was representing habitat of J. communis shrubs (F) protected by EUNIS. Principal coordinate analysis of weighted averages of Ellenberg’s indicator values (EIV) for herbaceous species, separated populations according to habitat type, while the same type analysis of ISSR data allowed distinguishing E habitat populations from populations of all other habitat type but G. Our study shows that on the local (Lithuanian) scale, molecular variance between populations of J. communis at ISSR loci might be related to habitat type. For evaluation and preservation of diversity of J. communis, different assessment methods should be included and management strategies should be directed in the way to retain variety of habitats encompassing both widely spread and less common ones.

Wydawca

-

Czasopismo

Rocznik

Tom

76

Opis fizyczny

p.61-71,fig.,ref.

Twórcy

  • Department of Biology, Faculty of Nature Sciences, Vytautas Magnus University, Vileikos 8, LT-44404, Kaunas, Lithuania
autor
  • Department of Biology, Faculty of Nature Sciences, Vytautas Magnus University, Vileikos 8, LT-44404, Kaunas, Lithuania
autor
  • Department of Mathematical Statistics, Gediminas Technical University, Vilnius, Sauletekio al. 11, Vilnius, Lithuania
autor
  • Institute of Environment and Ecology, Aleksandras Stulginskis University, Studentu 11, LT- 5336, Akademija, Kaunas region, Lithuania
  • Department of Biology, Faculty of Nature Sciences, Vytautas Magnus University, Vileikos 8, LT-44404, Kaunas, Lithuania
  • Department of Biology, Faculty of Nature Sciences, Vytautas Magnus University, Vileikos 8, LT-44404, Kaunas, Lithuania

Bibliografia

  • Adams RP (2011) Junipers of the World: The Genus Juniperus. 3rd ed. Trafford Publishing Company, Victoria, BC.
  • Adams RP & Demeke T (1993) Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553–571. doi: 10.2307/1222534.
  • Adams RP, Schwarzbach AE & Pandey RN (2003) The concordance of terpenoid, ISSR and RAPD markers, and ITS sequence data sets among genotypes: an example from Juniperus. Biochemical Systematics and Ecology 31: 375–387. doi: 10.1016/S0305-1978(03)00036-X.
  • Androsiuk P & Urbaniak L (2014) Genetic variability of Pinus sylvestris populations from IUFRO 1982 provenance trial. Dendrobiology 71: 23−33. doi: org/10.12657/denbio.071.003.
  • Areskeviciene R, Zvingila D, Gabrilavicius R & Kuusiene S (2005) The estimation of genetic diversity within and between Lithuanian populations of Norway spruce (Picea abies (L.) Karst.) by using RAPD. Baltic Forestry 11: 2–8.
  • Bettencourt SX, Mendonca D, Lopes MS, Rocha S, Monjardino P, Monteiro L & Da Camara Machado A (2015) Genetic diversity and population structure of the endemic Azorean juniper, Juniperus brevifolia (Seub.) Antoine, inferred from SSRs and ISSR markers. Biochemical Systematics and Ecology 59: 314−324. doi:org/10.1016/j.bse.2015.02.003.
  • Boratyński A, Lewandowski A, Boratyńska K, Montserrat JM & Romo A (2009) High level of genetic differentiation of Juniperus phoenicea (Cupressaceae) in the mediterranean region: geographic implications. Plant Systematics and Evolution 277: 163–172. doi: 10.1007/ s00606-008-0122-z.
  • Boratyński A, Wachowiak W, Dering M, Boratyńska K, Sękiewicz K, Sobierajska K, Jasińska AK, Klimko M., Montserrat JM, Romo A, Ok T & Didukh Y (2014) The biogeography and genetic relationships of Juniperus oxycedrus and related taxa from the Mediterranean and Macaronesian regions. Botanical Journal of the Linnean Society 174: 637–653. doi: 10.1111/boj.12147.
  • Butkiene R, Nivinskiene O & Mockute D (2006) Differences in the essential oils of the leaves (needles), unripe and ripe berries of Juniperus communis L. growing wild in Vilnius district (Lithuania). Journal of Essential Oil Research 18: 489–494. doi: 10.1080/10412905.2006.9699150.
  • Davies CE, Moss D & Hill MO (2004) EUNIS Habitat Classification revised 2004. European Topic Centre on Nature Protection and Biodiversity, Paris.
  • Douaihy B, Vendramin GG, Boratyński A, Machon N & Bou Dagher-Kharrat M (2011) High genetic diversity with moderate differentiation in Juniperus excelsa from Lebanon and the eastern Mediterranean region. AoB PLANTS plr003. doi:10.1093/aobpla/plr003.
  • Doyle JJ & Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12: 13–15.
  • Dzialuk A, Mazur M, Boratynska K, Montserrat JM, Romo A & Boratyński A (2011) Population genetic structure of Juniperus phoenicea (Cupressaceae) in the western Mediterranean Basin: gradient of diversity on a broad geographical scale. Annals of Forest Science 68: 1341–1350. doi: 10.1007/s13595-011-0150-7.
  • EEA (2015) The European Environment. State and Outlook 2015. Synthesis report. doi:10.2800/944899.
  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W & Paulißen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18: 1–258.
  • Evanno G, Regnaut S & Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611–2620.
  • Excoffi er L & Lischer HEL (2010) Arlequin suite ver. 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.
  • Falush D, Stephens M & Pritchard JK (2003) Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164: 1567–1587.
  • Filipowicz N, Piotrowski A, Ochocka JR & Asztemborska M (2006) The phytochemical and genetic survey of common and dwarf juniper (Juniperus communis and Juniperus nana) Identifies chemical races and close taxonomic identity of the species. Planta Medica 72: 850–853. doi: 10.1055/s-2006-941543.
  • Gruwez R, Leroux O, De Frenne P, Tack W, Viane R & Verheyen K (2013) Critical phases in the seed development of common juniper (Juniperus communis). Plant Biology 15: 210–219. doi: 10.1111/j.1438-8677.2012.00628.x.
  • Hantemirova EV, Berkutenko AN & Semerikov VL (2012) Systematics and gene geography of Juniperus communis inferred from isoenzyme data. Russian Journal of Genetics 48: 920–926. doi: 10.1134/S1022795412090050.
  • Jongman RHG, Ter Braak CJF & Van Tongeren OFR (1995) Data analysis in community and landscape ecology. Cambridge, University Press, New York.
  • Kasaian J, Behravan J, Hassany M, Emami SA, Shahriari F & Khayyat MH (2011) Molecular characterization and RAPD analysis of Juniperus species from Iran. Genetics and Molecular Research 10: 1069−1074. doi: 10.4238/vol10-2gmr1021.
  • Krupa SV (2003) Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environmental Pollution 124: 179–221. doi: 10.1016/S0269-7491(02)00434-7.
  • Labokas J & Loziene K (2013) Variation of essential oil yield and relative amounts of enantiomers of α-pinene in leaves and unripe cones of Juniperus communis L. growing wild in Lithuania. Journal of Essential Oil Research 25: 244–250. doi: 10.1080/ 10412905.2013.775678.
  • Lima AS, Trindade H, Figueiredo AC, Barroso JG & Pedro LG (2010) Volatile and molecular analysis of Juniperus brevifolia (Seub.) Antoine, an Azorean endemic species. Biochemical Systematics and Ecology 38: 621−629. doi: 10.1016/j.bse.2010.07.010.
  • Lithuanian Hydrometeorological Service under the Ministry of Environment. http://www.meteo.lt/en/web/guest/climate-regions-of-lithuania.
  • Marozas V, Racinskas J & Bartkevicius E (2007) Dynamics of ground vegetation after surface fires in hemiboreal Pinus sylvestris forests. Forest Ecology and Management 250:47–55. doi: 10.1016/j.foreco.2007.03.008.
  • Meloni M, Perini D, Filigheddu R & Binelli G (2006) Genetic variation in five Mediterranean populations of Juniperus phoenicea as revealed by Inter-simple sequence repeat (ISSR) markers. Annals of Botany 97: 299–304. doi: 10.1093/aob/mcj024.
  • Michalczyk IM, Sebastiani F, Buonamici A, Cremer E, Mengel C, Ziegenhagen B & Vendramin GG (2006) Characterization of highly polymorphic nuclear microsatellite loci in Juniperus communis L. Molecular Ecology Notes 6: 346–348. doi: 10.1111/j.1471-8286.2005.01227.x.
  • Ministry of Environment of the Republic of Lithuania http://www.am.lt/VI/article.php3?article_id=14510.
  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.
  • Oostermeijer JGB & De Knegt B (2004) Genetic population structure of the wind-pollinated, dioecious shrub Juniperus communis in fragmented Dutch heathlands. Plant Species Biology 19: 175–184. doi: 10.1111/j.1442-1984.2004.00113.x.
  • Peakall R & Smouse P (2012) GenAlEx v. 6.5: Genetic Analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28: 2537–2539. doi: 10.1093/bioinformatics/bts460.
  • Pritchard JK, Stephens M & Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959.
  • Provan J, Beatty GE, Hunter AM, McDonald RA, McLaughlin E, Preston SJ & Wilson S (2008) Restricted gene flow in fragmented population of a wind-pollinated tree. Conservation Genetics 9: 1521–1532. doi:10.1007/s10592-007-9484-y.
  • Romanovskaja D, Kalvane G, Briede A & Baksiene E (2009) The influence of climate warming on the changes of the length of phenological seasons in Lithuania and Latvia. Zemdirbyste-Agriculture 96: 218–231.
  • Rumeu B, Caujape-Castells J, Blanco-Pastor JL, Jaen-Molina R, Nogales M, Elias RB & Vargas P (2011) The colonization history of Juniperus brevifolia (Cupressaceae) in the Azores Islands. PLoS ONE 6: e27697. doi:10.1371/journal.pone.0027697.
  • Sanchez-Gomez P, Jimenez JF, Vera JB, Sanchez-Saorin FJ, Martinez JF & Buhagiar J (2013) Genetic structure of Tetraclinis articulata, an endangered conifer of the western Mediterranean basin. Silva Fennica 47: 1–14. doi.org/10.14214/sf.1073.
  • Silva L, Elias RB, Moura M, Meimberg H & Dias E (2011) Genetic variability and differentiation among populations of the Azorean endemic gymnosperm Juniperus brevifolia: baseline information for a conservation and restoration perspective. Biochemical Genetics 49: 715−734. doi: 10.1007/s10528-011-9445-5.
  • Sobierajska K, Boratyńska K, Jasińska AK, Dering M, Ok T, Douaihy B, Bou Dagher-Kharrat M, Romo A & Boratyński A (2016) Effect of the Aegean Sea barrier between Europe and Asia on differentiation in Juniperus drupacea (Cupressaceae). Botanical Journal of the Linnean Society 180: 365–385. doi: 10.1111/boj.12377.
  • Thomas PA, El-Barghathi M & Polwart A (2007) Biological Flora of British Isles: Juniperus communis L. Journal of Ecology 95: 1404–1440. doi: 10.1111/j.1365-2745.2007.01308.x.
  • Vaitkevičiūtė R, Brazaitis G, Šepetienė J & Žalkauskas R (2011a) Cross valuation of juniper formation – recreational and ecological viewpoints: Rural Development 2011: the 5th International Scientific Conference. Aleksandras Stulginskis University, Akademija, Lithuania, pp. 156−160.
  • Vaitkevičiūtė R, Brazaitis G & Šepetienė J (2011b) Dendrological and recreational values of Arlaviškė s juniper formation. Acta Biologica Universitatis Daugavpiliensis 11: 126–133.
  • Van De Peer Y & De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Computer Applications in Biosciences 10: 569–570.
  • Van der Merwe M, Winfield MO, Arnold GM & Parker JS (2000) Spatial and temporal aspects of the genetic structure of Juniperus communis populations. Molecular Ecology 9: 379–386. doi: 10.1046/j.1365-294x.2000.00868.x
  • Verheyen K, Adriaenssens S, Gruwez R, Michalczyk IM, Ward LK, Rosseel Y, Van den Broeck A & Garcıa D (2009) Juniperus communis: victim of the combined action of climate warming and nitrogen deposition? Plant Biology 11: 49–59. doi: 10.1111/j.1438-8677.2009.00214.x.
  • Ward LK (1982) The conservation of Juniper: longevity and old age. Journal of Applied Ecology 19: 917–928. doi: 10.2307/2403293.
  • Yeh FC, Yang R & Boyle TJB (1999) Popgene Version 1.31. Microsoft Window-based freeware for population genetic analysis. Centre for International Forestry Research. University of Alberta, pp. 1–28.
  • Zvingila D, Verbylaite R, Abraitis R, Kuusiene S & Ozolincius R (2002) Assessment of genetic diversity in plus tree clones of Pinus sylvestris L. using RAPD markers. Baltic Forestry 8: 2–7.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c6de39fc-0b5a-4bd5-8718-e947c334dbdd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.