PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 18 | 2 |

Tytuł artykułu

The concept for a reclamation technology of polluted small water reservoirs, with the application of MBBR reactors

Autorzy

Warianty tytułu

PL
Koncepcja redegradacji zanieczyszczonych małych zbiorników wodnych przy zastosowaniu technologii MBBR

Języki publikacji

EN

Abstrakty

EN
Aim of the study Adaptation of MBBR technology for the treatment of highly degraded waters in small water reservoirs. Investigation of the effectiveness of organic pollutants treatment in waters with highly polluted (or easily biodegradable) municipal sewage. Checking the effectiveness of nutrient removal during the process of cleaning this type of pollutants. Material and methods The study was conducted in laboratory conditions on a semi-technical scale. Diluted municipal sewage was treated in order to determine purification efficiency for each laboratory stand. The experiments were carried out in 4 research stands (volume of wastewater in each tank amounted to 1000 L), whereas each was equipped with a MBBR bioreactor with a moving bed (biofilm carriers). The physicochemical parameters of pH, redox, and oxygen concentration were examined, and laboratory analyses were performed to indicate changes in COD, BOD5, and selected forms of NH4 and PO4. On the basis of the obtained results, the effectiveness of the wastewater treatment was demonstrated, and the hydraulic parameters of the installation were modelled. Results and conclusions The results of experimental work indicate a significant effectiveness of the process of purifying and removing nutrients in MBBR installations. After designing a suitable floating platform, it will be possible to introduce such installations into degraded water reservoirs for their purification.
PL
Cel pracy Zaadaptowanie technologii MBBR do oczyszczania wód powierzchniowych. Zbadanie efektywności oczyszczania zanieczyszczeń organicznych w wodach o wysoce zanieczyszczonych ściekami komunalnymi (lub łatwo biodegradowalnymi). Sprawdzenie skuteczności usuwania biogenów w trakcie procesu oczyszczania tego typu zanieczyszczeń. Materiał i metody Badania prowadzone w warunkach laboratoryjnych w skali ćwierć technicznej. Oczyszczano rozcieńczone ścieki bytowo-komunalne w celu określenia efektywności oczyszczania dla każdego stanowiska badawczego. Doświadczenia prowadzono w 4 stanowiskach badawczych (V ścieków = 1000 L), każde zaopatrzone w bioreaktor MBBR z wpracowanym złożem biologicznym. Badano parametry fizykochemiczne pH, red-ox, stężenie tlenu, oraz wykonano analizy laboratoryjne dla wskazania zmian w ChZT, BZT5 , oraz wybranych formach biogenów NH4 i PO4. Na podstawie uzyskanych wyników wykazano efektywność oczyszczania oraz zamodelowano parametry hydrauliczne instalacji. Wyniki i wnioski Wyniki prac eksperymentalnych wskazują na znaczącą efektywność procesu oczyszczania oraz usuwania biogenów w instalacjach MBBR. Po zaprojektowaniu odpowiedniej platformy pływającej można będzie tego typu instalacji wprowadzić do zdegradowanych zbiorników wodnych w celu ich oczyszczania.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Numer

2

Opis fizyczny

p.121-133,fig.,ref.

Twórcy

autor
  • Department of Geoinformation, Photogrammetry and Remote Sensing of Environment, Faculty of Mining, Surveying and Environmental Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland

Bibliografia

  • Andreottola, G., Foladori P., Ragazzi M., Tatano F. (2000a). Experimental comparison between MBBR and activated sludge system for the treatment of municipal wastewater. Water Science & Technology, 41(4), 375–382.
  • Annor, F. O., Liebe, J., Van De Giesen, N. (2007). Near-Real-Time Monitoring of Small Reservoirs with Remote Sensing.
  • Ateia, M., Yoshimura, C., & Nasr, M. (2016). In-situ Biological Water Treatment Technologies for Environmental Remediation: A Review. J Bioremed Biodeg, 7(348), 2.
  • Barwal, A., & Chaudhary, R. (2014). To study the performance of biocarriers in moving bed biofilm reactor (MBBR) technology and kinetics of biofilm for retrofitting the existing aerobic treatment systems: a review. Reviews in Environ. Science and Bio/Tech, 13(3), 285–299.
  • Boix, D., Biggs, J., Céréghino, R., Hull, A. P., Kalettka, T., Oertli, B. (2012). Pond research and management in Europe:“Small is Beautiful”. Hydrobiologia, 689(1), 1–9.
  • Borkar, R. P., Gulhane, M. L., & Kotangale, A. J. (2013). Moving bed biofilm reactor–a new perspective in wastewater treatment. Environ. Sci. Toxicol. Food Technol., 6(6), 15–21.
  • Brönmark, C., & Hansson, L. A. (2017). The biology of lakes and ponds. Oxford University Press.
  • Brucet, S., Poikane, S., Lyche-Solheim, A., Birk, S. (2013). Biological assessment of European lakes: ecological rationale and human impacts. Freshwater Biology, 58(6), 1106–1115.
  • Bugajski, P., Chmielowski, K., Kaczor, G., (2016a). Reliability of a collective wastewater treatment plant. Journal of Ecological Engineering, 17(4).
  • Bugajski, P., Chmielowski, K., & Kaczor, G., (2016b). Optimizing the Percentage of Sewage from Septic Tanks for Stable Operation of a Wastewater Treatment Plant. Polish Journal of Environmental Studies, 25(4).
  • Chmielowski, K., Ślizowski, R., (2008). Defining the optimal range of a filter bed’s d10 replacement diameter in vertical flow sand filters. Environment Protection Engineering, 34(3), 35–42.
  • Comett-Ambriz, I., Gonzalez-Martinez, S., Wilderer, P. (2003). Comparison of the performance of MBBR and SBR systems for the treatment of anaerobic reactor biowaste effluent. In 3 rd World Water Congress: Wastewater Treatment Plants 47(12), 155–161.
  • Cooke, G. D., Welch, E. B., Peterson, S., Nichols, S. A. (2016). Restoration and management of lakes and reservoirs. CRC.
  • Directive, W. F. (2000). EU Water framework directive. Directive 2000/60/EC.
  • Dochain, D., & Vanrolleghem, P. A. (2001). Dynamical Modelling & Estimation in Wastewater Treatment Processes. IWA.
  • Dziubiński, M. & Prymer, J. (2009). Mechanics of two-phase fluids. Polish: Scientific and Technical Publishing in Warsaw. Ecological Engineering, 18(5), 555–574.
  • Hamilton, D. P., Collier, K. J., & Howard-Williams, C. (2016). Lake restoration in New Zealand. Ecological Management & Restoration, 17(3), 191–199.
  • Hering, D., Carvalho, L., Argillier, C., Beklioglu, M., Borja, A., Cardoso, A. C.,Hellsten, S. (2015). Managing aquatic ecosystems and water resources under multiple stress—An introduction to the MARS project. Science of the total environment, 503, 10–21.
  • Hoang, V., Delatolla, R., Abujamel, T., Mottawea, W., Gadbois, A., Laflamme, E., Stintzi, A. (2014). Nitrifying moving bed biofilm reactor (MBBR) biofilm and biomass response to long term exposure to 1 C. water research, 49, 215–224.
  • Hosseiny, S. H., & Borghei, S. M., 2002. Modelling of organic removal in a moving bed biofilm reactor (MBBR). Scientia Iranica, 9(1), 53–58.
  • Husa, V., Kutti, T., Ervik, A., Sjøtun, K., Hansen, P. K., Aure, J. (2014). Regional impact from fin-fish farming in an intensive production area (Hardangerfjord, Norway). Marine Biology Research, 10(3), 241–252.
  • Ji, Z. G. (2017). Hydrodynamics and water quality: modeling rivers, lakes, and estuaries. John Wiley & Sons.
  • Jurik, L., Húska, D., Halászová, K., & Bandlerová, A. (2015). Small Water Reservoirs–Sources of Water or Problems?. Journal of Ecological Engineering, 16(4).
  • Kershaw, G. B. (2015). Sewage purification and disposal. Cambridge University Press.
  • Larocque-Tobler, I. (2017). Using paleolimnology for lake restoration and management. Using Paleolimnology for Management and Restoration of Lakes, 5.
  • Liebe, J., Van De Giesen, N., & Andreini, M. (2005). Estimation of small reservoir storage capacities in a semi-arid environment: study in the Upper East Region of Ghana. Physics and Chemistry of the Earth, A/B/C, 30(6), 448–454.
  • Mazur, R., Bedla, D., Chmielowski, K., Nowak, A., Mazurkiewicz, J. (2016). Wpływ warunków tlenowych na skuteczność oczyszczania ścieków bytowych w technologii zatapialnych filtrów włókninowych. Przemysł Chem., 95(8), 1513–1517.
  • Mioduszewski, W. (2014). Small (natural) water retention in rural areas. Journal of Water and Land Develop., 20(1), 19–29.
  • Mioduszewski, W. (2012). Small water reservoirs–their function and construction/Małe zbiorniki wodne–ich funkcje i konstrukcje. Journal of Water and Land Development, 17(1), 45–52.
  • Mitsch W.J., Gosselink J.G. (2000). The value of wetlands: importance of scale and landscape.
  • Nascimento, V. F., Ribeiro Neto, A. (2017). Characterization of reservoirs for water supply in Northeast Brazil using high resolution remote sensing. RBRH, 22.
  • Natarajan, P., Velraj, R., & Seeniraj, R. V. (2008). Application of drift-flux model in liquid-solid circulating fluidized bed. Chemical Engineering Communications, 195(9) 1144–1158.
  • Nowak, A., Mazur, R., Panek, E., Chmist, J. (2018). Model Studies on the Effectiveness of MBBR Reactors for the Restoration of Small Water Reservoirs. In E3S Web of Conferences. EDP Sciences. 30. 02004
  • Ødegaard, H. (2006). Innovations in wastewater treatment: moving bed biofilm process. Water Science and Technology, 53(9), 17–33.
  • Oertli, B., Céréghino, R., Hull, A., Miracle, R. (2009). Pond conservation: from science to practice. Hydrob., 634(1), 1–9.
  • Payen, J., Faurès, J., Vallée, D. (2012). Small reservoirs and water storage for smallholder farming. Agriculture Water Management Business Proposal Document.
  • Pokorný J., Hauser V. (2002). The restoration of fish ponds in agricultural landscapes. 18(5), 555–574.
  • Schwartz, S. S., & Jenkins, D. G. (2000). Temporary aquatic habitats: constraints and opportunities. Aquatic Ecology, 34(1), 3–8.
  • Sitarek, M., Napiórkowska-Krzebietke, A., Mazur, R., Czarnecki, B., Pyka, J. P., Stawecki, K., Kapusta, A. (2017). Application of Effective Microorganisms technology as a lake restoration tool-a case study of Muchawka Reservoir. Journal of Elementology, 22(2), 529–543.
  • Smith, K. (2013). Environmental hazards: assessing risk and reducing disaster. Routledge.
  • Sobczyński, T., Joniak, T., Pronin, E. (2012). Assessment of the Multi-Directional Experiment to Restore Lake Góreckie (Western Poland) with Particular Focus on Oxygen and Light Conditions: First Results. Polish Journal of Environmental Studies, 21(4).
  • Tanaka, T., Tsuzuki, K., Nishijima, N., & Takagi, T. (2001). Algae-removal performance of a fluidized-bed biofilm reactor system for lake water treatment. Water science and technology, 43(1), 277–283.
  • Tilley, D. F. (2011). Aerobic wastewater treatment processes. Iwa Publishing.
  • Uberman, R., Ostręga, A. (2012). Reclamation and revitalisation of lands after mining activities: Polish achievements and problems. AGH Journal of Mining and Geoeng., 36(2), 285–297.
  • Usha, R., Ramalingam, K., Rajan, U. B. (2006). Freshwater Lakes – A potential source for aquaculture activities – Amodel study on Perumal Iake, Cuddalore, Tamil Nadu. Journal of environmental biology, 27(4), 713–722.
  • Wasik, E., Bugajski, P., Chmielowski, K., Nowak, A., & Mazur, R., (2017a). Crystallization of struvite and hydroxyapatite during removal of biogenic compounds on the filter bed. Przemysl Chemiczny, 96(8), 1739–1743.
  • Wąsik, E., Chmielowski, K., & Operacz, A. (2017b). PCA jako narzędzie eksploracji danych charakteryzujących pracę komór nitryfikacji oczyszczalni ścieków w Trepczy. Acta Sci. Pol. Formatio Circumiectus, 16(1), 2017.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c6cde94f-fa79-47f8-8a1e-f8005f768b48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.