PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 3 |

Tytuł artykułu

Role of primary sludge hydrolysis in energy recovery from municipal wastewater sludge

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Laboratory experiments supported by full-scale operational observations have been utilized to assess the possible yield of methane-rich biogas via decomposition of COD and volatile fatty acids (VFAs) from organic matter trapped and settled in a municipal wastewater treatment plant. The impact of operational conditions (mainly solids' retention time) on VFAs and methane-rich gas generation was estimated by fractionation of COD in sludge and supernatant. Assessment of efficiency of this process was done by steady state measurements of COD solubilization. Full-scale investigations supported by laboratory tests enlightened some specific operational problems that may occur in wastewater treatment plants with an intensive acidic hydrolysis. Relatively high consumption of biodegradable carbon is usually one of adverse and unfavorable effects.

Wydawca

-

Rocznik

Tom

23

Numer

3

Opis fizyczny

p.1033-1037,fig.,ref.

Twórcy

autor
  • Krakow University of Technology, Warszawska 24, 31-155 Krakow, Poland

Bibliografia

  • 1. FORESTI E., ZAIAT M., VALLERO M. Anaerobic processes as the core technology for sustainable domestic wastewater treatment: Consolidated applications, new trends, perspectives, and challenges, Reviews in Environmental Science and Bio/Technology. 5, 3, 2006.
  • 2. KURBIEL J., HULTMAN B., HOPKOWICZ M. (Eds.) Wastewater sludge and solid waste management – a compendium; Proc. Of Royal University of Technology – author’s draft version, Stockholm, Sweden, 2000.
  • 3. RYBICKI S.M., KURBIEL J. Energy saving by retrofitting WWTP from aerobic stabilisation of wasted activated sludge to anaerobic digestion – case study; Proc. Of a Polish- Swedish Seminar, Joint Polish Swedish Reports, Report No 7, Stockholm, 2000.
  • 4. KALT G., KRANZL L. Assessing the economic efficiency of bioenergy technologies in climate mitigation and fossil fuel replacement in Austria using a techno-economic approach, Appl. Energ., 88, 3665, 2011.
  • 5. LIU Y., JOO-HWA T. Strategy for minimization of excess sludges production from the activated sludges process. Biotechnol. Adv. 19, 97, 2001.
  • 6. RYBICKI S.M., CIMOCHOWICZ-RYBICKA M. Dimensioning of digestion chamber for upgrading of gas Recovery at Wastewater Treatment Plant, Archives of Environmental Protection, 39, (4), 105, 2013.
  • 7. CIMOCHOWICZ-RYBICKA M., Effect of anaerobic sludge composition on a biogas production, Proc. Of a Polish- Swedish Seminar, Joint Polish Swedish Reports, Report No 7, Stockholm, 2000.
  • 8. MADSEN M., HOLM-NIELSEN J.B., ESBENSEN K.H. Monitoring of anaerobic digestion process: A review perspective, Renew. Sust. Energ. Rev. 15, 3141, 2011.
  • 9. ØDEGAARD H. Sludge minimization technologies – an overview. Water Sci. Techol 49, (10), 31, 2004.
  • 10. BIAŁEK K., KIM J., LEE C., COLLINS G., MAHONY T., O’FLAHERTY V. Quantitative and qualitative analyses of methanogenic community development in high-rate anaerobic bioreactors, Water Res., 45, 1298, 2011.
  • 11. EKAMA G.A. Using bioprocess stoichiometry to build a plant-wide mass balance based steady-state WWTP model, Watre Res., 43, 2101, 2009.
  • 12. GRADY C.P.L., DAIGGER G.T., LOVE N.G., FILIPE C.D.M. Biological wastewater treatment, CRC Press Taylor&Francis Group, 2011.
  • 13. VOLLERTSEN J., PETERSEN G., BORREGAARD V.R. Hydrolysis and fermentation of activated sludge to enhance biological phosphorus removal, Water Sci. Technol., 53, 12, 55, 2006.
  • 14. SÖTEMANN S.W., VAN RENSBURG P., RISTOW N.E., WENTZEL M.C., LOEWENTHAL R.E., EKAMA G.A. Integrated chemical, physical and biological processes modeling of anaerobic digestion of sewage sludge, Water Sci. Technol. 54, (5), 109, 2006.
  • 15. CIMOCHOWICZ-RYBICKA M., RYBICKI S., FRYŹLEWICZ-KOZAK B. Disintegration of fermented sludges – possibilities and potential gains, Part in: Environmental Engineering III, Ed: M. Pawłowska and L. Pawłowski; Taylor & Francis Group, London, UK, 2010.
  • 16. JÖNSSON K., POTTIER A., DIMITROVA I., NYBERG U. Utilizing laboratory experiments as a first step to introduce primary sludge hydrolysis in full-scale, Water Sci. Technol., 57, 1397, 2008.
  • 17. BRINCH P.P., RINDEL K., KALB K. Upgrading to nutrient removal by means of internal carbon from sludge hydrolysis, Water Sci. Technol., 29, 31, 1994.
  • 18. CIMOCHOWICZ-RYBICKA M. Application of the sludge activity test to improve overall methane production using sludge sonication, In proceedings of the 4th ASPIRE, Tokyo, Japan, 2011.
  • 19. BARNARD J.L. Alternative Prefermentation Systems. Proc. 67th Annual WEF Conference Chicago, 1994.
  • 20. MOSER-ENGELER R., UDERT K.M., WILD D., SIEGRIST H. Products from primary sludge fermentation and their suitability for nutrient removal, Water Sci. Technol., 38, 265, 1998.
  • 21. JÖNSSON K., POTTIER A., DIMITROVA I., NYBERG U. Utilizing laboratory experiments as a first step to introduce primary sludge hydrolysis in full-scale, Water Sci. Technol., 57, 1397, 2008.
  • 22. RYBICKI S.M. New technologies of phosphorus removal from wastewater Joint Polish-Swedish Reports. Div. of Water Resources Engineering, Royal Institute of Technology, Sweden. Report No 4, 121, 2001.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c66fd1c9-b128-4846-ac1a-ef90770d1fbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.