PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 16 | 2 |

Tytuł artykułu

Winter and summer torpor in a free-ranging subtropical desert bat: the fishing myotis (Myotis vivesi)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Use of torpor likely favors the survival of subtropical bats in harsh environments. The fishing myotis (Myotis vivesi) is a species endemic to desert islands in the Gulf of California, where summers are extremely hot and winters are cold and windy. We explored thermoregulating abilities of M. vivesi measuring skin temperature (Tskin) on free-ranging individuals in winter 2010 and 2011, and in summer 2010. We also measured ambient (Ta) and roost (Troost) temperatures during the study, and we obtained data for wind speed at night time during winter periods. We found that all bats entered torpor in both winters and that at least three individuals hibernated for several days, which had not been reported previously for bats in subtropical deserts. In summer, three individuals entered short bouts of shallow torpor in early mornings. Roosts were slightly warmer than Ta in winter at nightime, and in summer they never reached temperatures > 38.7°C, even at Ta ≈ 45°C. Roost occupancy in winter was higher during windy nights in 2010 but no pattern was found in 2011. Therefore, in winter fishing myotis were more likely to remain in their night roosts and enter torpor when ambient conditions (e.g., strong winds) limit fishing on marine waters. In summer, roosts provide good insulation against high Ta, and bats might not need to resort to torpor to lower their metabolic rate except for a brief period during early mornings. When resources are limited the use of torpor may increase this insular species' chances of survival.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

16

Numer

2

Opis fizyczny

p.327-336,fig.,ref.

Twórcy

  • Posgrado en Ciencias Biologicas, Instituto de Biologia, Universidad Nacional Autonoma de Mexico, Mexico D.F. 04510, Mexico
  • Estacion de Biologia Chamela, Instituto de Biologia, Universidad Nacional Autonoma de Mexico, A.P. 21, San Patricio, Jalisco 48980, Mexico
  • Laboratorio de Sistemas de Informacion Geografica, Departamento de Zoologia, Instituto de Biologia, Universidad Nacional Autonoma de Mexico, Mexico D.F. 04510, Mexico
  • H. T. Harvey and Associates, 983 University Avenue Building D., Los Gatos, California, USA

Bibliografia

  • 1. S. Álvarez-Borrego 2002. Physical oceanography. Pp. 41–59, in A new island biogeography of the Sea of Cortés ( T. J. Case , M. L. Cody , and E. Ezcurra , eds.).Oxford University Press, New York, 690 pp. Google Scholar
  • 2. S. T. Álvarez-Castañeda , and A. Ortega-Rubio . 2001. Current status of rodents on islands in the Gulf of California. Biological Conservation, 109: 157–163. Google Scholar
  • 3. D. Audet , and D. Thomas . 1997. Facultative hypothermia as a thermoregulatory strategy in phyllostomid bats, Carollia perspicillcita and Sturnina lilium. Journal of Comparative Physiology, 167B: 147–152. Google Scholar
  • 4. R. M. R. Barclay , M. C. Kalcounis , L. H. Crampton , C. Stefan , M. J. Vonhof , L. Wilkinson , and R. M. Brigham . 1996. Can external radiotransmitters be used to assess body temperature and torpor in bats? Journal of Mammalogy, 77: 1102–1106. Google Scholar
  • 5. R. B. Blood , and M. K. Clark . 1998. Myotis vivesi. Mammalian Species, 588: 1–3. Google Scholar
  • 6. R. E. Carpenter 1968. Salt and water metabolism in the marine fish-eating bat Pizonyx vivesi. Comparative Biochemistry and Physiology, 24: 951–964. Google Scholar
  • 7. M. Cody , R. Moran , J. Rebman , and H. Thompson . 2002. Plants. Pp. 63–111, in A new island biogeography of the sea of Cortés ( T. J. Case , M. L. Cody , and E. Ezcurra , eds.). Oxford University Press, New York, 690 pp. Google Scholar
  • 8. D. Cory Toussaint , A. E. McKechnie , and M. van der Merwe . 2010. Heterothermy in free-ranging male Egyptian freetailed bats (Tadarida aegyptiaca) in a subtropical climate. Mammal Biology, 75: 466–470. Google Scholar
  • 9. S. Daniel , C. Korine , and B. Pinshow . 2010. The use of torpor in reproductive female Hemprich's long-eared bats (Otonycteris hemprichii). Physiological and Biochemical Zoology, 83: 142–148. Google Scholar
  • 10. R. Douglas , O. González-Yajimovich , J. Ledesma-Vázquez , and F. Staines-Urias . 2007. Climate forcing, primary production and the distribution of Holocene biogenic sediments in the Gulf of California. Quaternary Science Reviews, 26: 115–129. Google Scholar
  • 11. J. J. Flores-Martínez , C. H. Floyd , L. G. Herrera , and B. May . 2005. Genetic variation and population size of the endangered fishing bat, Myotis vivesi, in Isla Partida. Pp. 187–192, in Contribuciones mastozoológicas en homenaje a Bernardo Villa ( V. Sánchez-Cordero and R. A. Medellín , eds.). Instituto de Biología-UNAM, Instituto de Ecología-UNAM, and CONABIO, Mexico City, 680 pp. Google Scholar
  • 12. F. Geiser 1996. Torpor in reproductive endotherms. Pp. 81–86, in Adaptations to the cold: 10th international hibernation symposium ( F. Geiser , A. J. Hulbert , and S. C. Nicol , eds.). University of New England Press, Armidale, 404 pp. Google Scholar
  • 13. F. Geiser 2004. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annual Review of Physiology, 66: 239–274. Google Scholar
  • 14. F. Geiser 2006. Energetics, thermal biology, and torpor in Australian bats. Pp. 5–22, in Functional and evolutionary ecology of bats ( A. Zubaid , G. F. McCracken , and T. H. Kunz , eds.). Oxford University Press, New York, 342 pp. Google Scholar
  • 15. F. Geiser , and C. Stawski . 2011. Hibernation and torpor in tropical and subtropical bats in relation to energetics, extinctions, and the evolution of endothermy. Integrative and Comparative Biology, 51: 337–348. Google Scholar
  • 16. M. Herrera , L. G. , and J. J. Flores M. , 2001. Conserving fishing bats in the Sea of Cortez. Bats, 19: 7–11. Google Scholar
  • 17. IUPS Thermal Commission. 2001. Glossary of terms for thermal physiology. Japanese Journal of Physiology, 52: 245–280. Google Scholar
  • 18. D. H. Kelm , and O. von Helversen . 2007. How to budget metabolic energy: torpor in a small neotropical mammal. Journal of Comparative Physiology. 177B: 667–677. Google Scholar
  • 19. J.-N. Liu , and W. H. Karasov . 2011. Hibernation in warm hibernacula by free-ranging Formosan leaf-nosed bats, Hipposideros terasensis, in subtropical Taiwan. Journal of Comparative Physiology. 181B: 125–35. Google Scholar
  • 20. J. A. Maya 1968. The natural history of the fish-eating bat, Pizonyx vivesi. Ph.D. Thesis, University of Arizona, Tucson, 106 pp. Google Scholar
  • 21. A. E. McKechnie , R. M. A. Ashdown , M. B. Christian , and R. M. Brigham . 2007. Torpor in an African caprimulgid, the freckled nightjar Caprimulgus tristigma. Journal of Avian Biology, 38: 261–266. Google Scholar
  • 22. B. K. McNab , and F. J. Bonaccorso . 2001. The metabolism of New Guinean pteropodid bats. Journal of Comparative Physiology. 171B: 201–214. Google Scholar
  • 23. A. Otálora-Ardila , L. G. Herrera M. , J. J. Flores-Martínez , and C. C. Voigt . 2013. Marine and terrestrial food sources in the diet of the fishing-eating myotis (Myotis vivesi). Journal of Mammalogy, 94: 1102–1110. Google Scholar
  • 24. M. K. Robinson 1973. Atlas of monthly mean sea surface and subsurface temperatures in the Gulf of California, Mexico. San Diego Society of Natural History Memoir, 5: 1–79. Google Scholar
  • 25. D. Russo , and G. Jones . 2003. Use of foraging habitats by bats in a Mediterranean area determined by acoustic surveys: conservation implications. Ecography, 26: 197–209. Google Scholar
  • 26. B. Smit , J. G. Boyles , R. M. Brigham , and A. E. McKechnie . 2011. Torpor in dark times: patterns of heterothermy are associated with the lunar cycle in a nocturnal bird. Journal of Biological Rythms, 26: 241–248. Google Scholar
  • 27. J. R. Speakman , and D. W. Thomas . 2003. Physiological ecology and energetics of bats. Pp. 430–492, in Bat ecology ( T. H. Kunz and M. B. Fenton , eds.). University of Chicago Press, Chicago, 798 pp. Google Scholar
  • 28. C. Stawski , and F. Geiser . 2010a. Fat and fed: frequent use of summer torpor in a subtropical bat. Naturwissenschaften, 97: 29–35. Google Scholar
  • 29. C. Stawski , and F. Geiser . 2010b Seasonality of torpor patterns and physiological variables of a free-ranging subtropical bat. Journal of Experimental Biology, 213: 393–399. Google Scholar
  • 30. C. Stawski , C. Turbill , and F. Geiser . 2009. Hibernation by a free-ranging subtropical bat (Nyctophilus bifax). Journal of Comparative Physiology. 179B: 433–441. Google Scholar
  • 31. C. Turbill 2006. Thermoregulatory behavior of tree-roosting chocolate wattled bats (Chalinolobus morio) during summer and winter. Journal of Mammalogy, 87: 318–323. Google Scholar
  • 32. C. Turbill , G. Körtner , and F. Geiser . 2003a. Natural use of heterothermy by a small, tree-roosting bat during summer. Physiological and Biochemical Zoology, 76: 868–876. Google Scholar
  • 33. C. Turbill , B. S. Law , and F. Geiser , 2003b. Summer torpor in a free-ranging bat from subtropical Australia. Journal of Thermal Biology. 28: 223–226. Google Scholar
  • 34. L. Vivier , and M. van der Merwe . 2007. The incidence of torpor in winter and summer in the Angolan free-tailed bat, Mops condylurus (Microchiroptera: Molossidae), in a subtropical environment, Mpumulanga, South Africa. African Zoology, 42: 50–58. Google Scholar
  • 35. J. B. Williams , B. I. Tieleman , and M. Shobrak . 2009. Validation of temperature-sensitive radio transmitters for measurement of body temperature in small animals. Ardea, 97: 120–124. Google Scholar
  • 36. C. K. R. Willis , and C. E. Copper . 2009. Techniques for studying thermoregulation and thermal biology in bats. Pp. 646–658, in Ecological and behavioral methods for the study of bats ( T. H. Kunz and S. Parsons , eds.). Johns Hopkins University Press, Baltimore, 901 pp. Google Scholar
  • 37. C. K. R. Willis , J. E. Lane , E. T. Liknes , D. L. Swanson , and R. M Brigham . 2005. Thermal energetics of female big brown bats (Eptesicus fuscus). Canadian Journal of Zoology, 83: 871–879. Google Scholar
  • 38. C. K. R. Willis , M. Brigham , and F. Geiser . 2006. Deep, prolonged torpor by pregnant, free-ranging bats. Naturwissenschaften, 93: 80–83. Google Scholar
  • 39. M. Wilz , and G. Heldmaier . 2000. Comparison of hibernation, estivation and daily torpor in the edible dormouse, Glis glis. Journal of Comparative Physiology, 170B 511–521. Google Scholar
  • 40. M. S. Wojciechowski , and B. Pinshow . 2009. Heterothermy in small, migrating passerine birds during stopover: use of hypothermia at rest accelerates fuel accumulation. Journal of Experimental Biology, 212: 3068–3075. Google Scholar
  • 41. M. S. Wojciechowski , M. Jefimow , and E. Tęgowska. 2007. Environmental conditions, rather than season, determine torpor use and temperature selection in large mouse-eared bats (Myotis myotis). Comparative Biochemistiy and Physiology, 147A: 828–840. Google Scholar

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c60e5e99-a32b-46f9-b1dd-5a38301410d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.