PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 589 |

Tytuł artykułu

Charakterystyka grup fungicydów i induktorów odporności stosowanych w ograniczaniu występowania patogenów zbóż

Treść / Zawartość

Warianty tytułu

EN
Fungicides and plant resistance inducers - indispensable for controlling cereal pathogens, detrimental to the environment

Języki publikacji

PL

Abstrakty

PL
W chemicznej ochronie zbóż stosowane są g łównie fungicydy azolowe, morfolinowe, strobilurynowe, benzimidazolowe oraz inhibitory dehydrogenazy kwasy bursztynowego. Fungicydy azolowe i morfolinowe są inhibitorami biosyntezy steroli (SBI). Fungicydy strobilurynowe (QoI) i inhibitory dehydrogenazy kwasu bursztynowego (SDHI) zaburzają proces oddychania grzybów, a benzimidazolowe (MBC) tworzenie ß-tubuliny podczas mitozy. W populacjach wielu patogenów zbóż wykryto formy odporne na wszystkie grupy fungicydów, jednak niebezpieczeństwo powstawania tych form dla fungicydów strobilurynowych i benzimidazolowych jest szczególnie duże. Większość fungicydów strobilurynowych wyróżnia się mniejszą trwałością w glebie i większą podatnością na wymywanie. Toksyczność fungicydów wobec Daphnia magna określona wskaźnikiem ED50 waha się w poszczególnych klasach fungicydów w następujących zakresach: 1,3–51 (azole), 1,3–25 (morfoliny), 0,011–1,3 (strobiluryny), 0,044–100 (SDHI), 0,15–5,4 ml·l⁻¹ (bezimidazole). Sporadycznie literatura opisuje również przypadki endokrynnego działania azoli lub rakotwórczego wpływu benzimidazoli na zwierzęta. Alternatywą dla fungicydów mogą być przyjazne środowisku preparaty indukujące odporność systemiczną roślin (SAR), rzadko stosowane w ochronie zbóż przed patogenami.
EN
Major fungicides groups used in chemical plant protection are: azoles, morpholines, strobilurins (QoI), benzimidazoles and thiophanates (MBC) and succinate dehydrogenase inhibitors (SDHI). In recent years, SDHI popularity continues in grow because of its efficiency. Among active SDHI chemicals there are long-known substances, e.g. carboxin, fenfuram and new synthesized compounds. Modes of action of each fungicide groups are different and their classification is based on specific active compounds mechanism of action. Azole and morpholine fungicides are inhibitors of sterol synthesis. One of the main sterols in fungal cells is ergosterol which is an important building compound in cell wall. Ergosterol is necessary to maintain cell membrans proper functions. Strobilurins and succinate dehydrogenase inhibitors interrupt respiratory chain in fungal cells by blocking electrons transfer. Strobilurins connect with ubichinon coenzyme in cytochrome b and c1 whereas SDHI connect with succinate dehydrogenase complex. Benzimidazoles and thiophanates inhibit synthesis of β-tubulin during mitosis. Crop pathogens resistance to all these active compounds has been discovered so far. The most serious hazard of pathogen resistance acquisition is a characteristic of benzimidazole and strobilurin fungicides. There is high probability of forming resistant pathogens due to new fungicides production. There are four major resistance mechanisms in fungi: (1) change in target site (mutations), (2) metabolic detoxification of active substance, (3) production of the additional enzyme target site, (4) removal of the target site. Durability in soil is determined by half-life time (DT₅₀) of active compounds: azoles 1.6–120, morpholines 21–49,5, strobilurins 7–180.5, SDHI 3.5–118.8, benzimidazoles and thiophanates 5–724 days. Short period of half-life time of selected strobilurins is linked with susceptibility to eluviation. Fungicides toxicity to Daphnia magna is defined as EC₅₀ index which varies between each group of fungicides, e.g.: azoles 1.3–51, morpholines 1.3–25, strobilurins 0.011–1.3, SDHI 0.044–100, benzimidazoles 0.15–5.4 ml L⁻¹. However, several case reports of azoles endocrine and benzimidazoles carcinogenic effects on animals have been reported. Environmentally friendly alternative for chemical plant protection are preparations inducing systemic acquired resistance (SAR). Salicylic acid (SA), 2,6-dichloroisonicotinic acid and gamma-aminobutyric acid (GABA) and chitosan are inducers (called elicitors) of SAR in plants. The main advantage of preparations containing elicitors is no risk of pathogen resistant forms spread. So far, such preparations are not often used in crops protection.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

589

Opis fizyczny

s.109-121,tab.,bibliogr.

Twórcy

autor
  • Uniwersytet Warmińsko-Mazurski
autor
  • Uniwersytet Warmińsko-Mazurski
autor
  • Uniwersytet Warmińsko-Mazurski

Bibliografia

  • Agrios G.N., 2005. Plant Pathology. Elsevier Academic, Burlingtion, MA.
  • Avenot H.F., Michailides T.J., 2010. Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Protection 29, 643–651.
  • Ayres P.G., 2004. Alexis Millardet: France’s forgotten mycologist. Mycologist 18(1), 22–26.
  • Brown J.K., Slater S.E., See K.A., 1991. Sensitivity of Erysphe graminis f. sp. hordei to morpholine and piperidine fungicides. Crop Protection 10(6), 445–454.
  • CDPR (California Department of Pesticide Regulation), 2003. Boscalid. Public Report 2003-8.
  • Cycoń M., Wójcik M., Piotrowska-Seget Z., 2011. Biodegradation kinetics of the benzimidazole fungicide thiophanate-methyl by bacteria isolated from loamy sand soil. Biodegradation 22, 573–583.
  • Danaher M., De Ruyck H., Crooks S.R.H., Dowling G., O’Keeffe M., 2007. Review of methodology for the determination of benzimidazole residues in biological matrices. J. Chromatogr. B 845, 1.
  • EPA (Environmental Protection Agency), 2003. Pesticide Fact Sheet. Boscalid. [online] http:// www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-128008_01-Jul03.pdf [dostęp: 21.01.2016].
  • FAO (Food and Agriculture Organization of the United Nations), 2009. Pesticide residues in food–2009. Evaluation. Part I. Residues. FAO Plant Production and Protection Paper 198, 134–145.
  • FRAC Code List, 2016. Fungicides sorted by mode of action (including FRAC Code numbering) [online]: http://frac.info/ [dostęp: 25.02.2016].
  • FRAC (Fungicide Resistance Action Committee), 2015. List of Species Resistant to SDHIs. [on -line] http://frac.info/ [dostęp: 22.12.2015].
  • FSC (Food Safety Commission), 2004. Evaluation Report. Boscalid. [online]: https://www.fsc.go.jp/ english/evaluationreports/pesticide/boscalid_full_170411.pdf [dostęp: 24.01.2016].
  • Gisi U., Sierotzki H., Cook A., McCaffery A., 2002. Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Manag. Sci. 58, 859–867.
  • Gupta R.C., 2011. Reproductive and developmental toxicology. Academic Press.
  • Hahn M., 2014. The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. J. Chem. Biol. 7(4), 133–141.
  • Heise T., Schmidt F., Knebel C., Rieke S., Haider W., Pfeil R., Kneuer C., Niemann L., Marx-Stoelting P., 2014. Hepatotoxic effects of (tri)azole fungicides in a broad dose range. Arch. Toxicol. doi 10.1007/s00204-014-1336-1.
  • Hooser E.A., Jason B. Belden J.B., Loren M. Smith L.M., McMurry S.T., 2012. Acute toxicity of three strobilurin fungicide formulations and their active ingredients to tadpoles. Ecotoxicology 21, 1458–1464.
  • Ivanova B., Spiteller M., 2014. Quantitation of heterogeneous formulations of morpholine-type fungicides and surfactants in polluted soils. Water Air Soil Pollut. 225, 1918, doi 10.1007/ /s11270-014-1918-9.
  • Khan M., H.Z. Mahmood, Damalas C.A., 2015. Pesticide use and risk perceptions among farmers in the cotton belt of Punjab, Pakistan. Crop Prot. 67, 184–190.
  • Kim I.S., Beaudette L.A., Shim J.H., Trevors J.T., Suh Y.T., 2002. Environmental fate of the triazole fungicide propiconazole in a rice-paddy-soil lysimeter. Plant and Soil 239, 321–331.
  • Klix M. B., Verreet J. A., Beyer M., 2007. Comparison of the declining triazole sensitivity of Gibberella zeae and increased sensitivity achieved by advances in triazole fungicide development. Crop Protection 26(4), 683–690.
  • Levina I.L., Fedorova E.A., Kuznetsova Y.L., Zinchuk O.A., 2012. Dynamics of antioxidant protection and detoxication processes affected by strobilurin fungicides in the liver of cyprinids. Inland Water Biology 5(2), 222–228.
  • Liu Y., Chen X., Jiang J., Hamada M.S., Yin Y., Ma Z., 2014. Detection and dynamics of differentcarbendazimresistance conferring β-tubulin variants of Gibberella zeae collected from infected wheat heads and rice stubble in China. Pest Manag. Sci. 70(8), 1228–1236.
  • Lutz P., 2012. Benzimidazol i jego pochodne – od fungicydów do narkotyków zmodyfikowanych. Nowe zagrożenia zawodowe i środowiskowe. Medycyna Pracy 63(4), 505–513.
  • Meng X.H., Yang L.Y., Kennedy J.F., Tian S.P., 2010. Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydr. Polym. 81, 70–75.
  • Morton V., Staub T., 2008. A short history of fungicides. APSnet Features, doi 10.1094.
  • Ochoa-Acuńa H.U., Bialkowski W., Yale G., Hahn L., 2009. Toxicity of soybean rust fungicides to freshwater algae and Daphnia magna. Ecotoxicology 18, 440–446.
  • OECD (Organisation for Economic Co-operation and Development), 2011. OECD MRL Calculator: spreadsheet for single data set and spreadsheet for multiple data set. 2 March 2011. Pesticide Publications/Publications on Pesticide Residues.
  • Parker J.E., Warrilow A.G.S., Price C.L., Mullins J.G., Kelly D.E., Kelly S.L., 2014. Resistance to antifungals that target CYP51. J. Chem. Biol. 7, 143–161.
  • Podolska G., Sułek A., 2012. Wpływ intensywności uprawy na plon i cechy struktury plonu odmian pszenicy ozimej. Pol. J. Agron. 11, 41–46.
  • Rabea E.I., Badawy M.E.I., Steurbaut W., Stevens C.V., 2009. In vitro assessment of N-(benzyl)chitosan derivatives against some plant pathogenic bacteria and fungi. Eur. Polym. J. 45, 237–245.
  • Reis E.M., Basso D. F., Zanatta M., 2013. Loss of sensitivity of Blumeria graminis f. sp. tritici to triadimenol applied as seed treatment. Trop. Plant Pathol. 38(1), 55–57.
  • Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 1107/2009 z dnia 21 października 2009 r. dotyczącym dopuszczania do obrotu środków ochrony roślin i uchylające dyrektywy Rady 79/117/EWG i 91/414/EWG. Dz.U. UE L 309/1.
  • Sapieha-Waszkiewicz A., Marjańska-Cichoń B., Miętkiewski R., 2010. Porównanie wpływu preparatów biotechnicznych Bioczos S, Biosept 33 SL i syntetycznych pestycydów na kiełkowanie zarodników grzybów owadobójczych. Ochrona Środowiska i Zasobów Naturalnych 46, 117–125.
  • Sauter H., Steglich W., Anke T., 1999. Strobilurine: evolution einer neuen wirkstoffklasse. Angew. Chemie. 111, 1416–1438.
  • Sierotzki H., Parisi S., Steinfeld U., Tenzer I., Poirey S., Gisi, U., 2000. Mode of resistance to respiration inhibitors at the cytochrome bc1 enzyme complex of Mycosphaerella fijiensis field isolates. Pest Manag. Sci. 56(10), 833–841.
  • Sierotzki H., Scalliet G., 2013. A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology 103(9), 880–887.
  • Singla A.K., Chawla M., 2001. Chitosan: some pharmaceutical and biological aspects – an update. J. Pharm. Pharmacol. 53, 1047–1067.
  • Stadnik M.J., Buchenaueer H., 2000. Inhibition of phenylalanine ammonia-lyase suppresses the resistance induced by benzothiadiazole in wheat to Blumeria graminis f. sp. tritici. Physiol. Mol. Plant. Pathol. 57, 25–34.
  • Taxvig C., Hass U., Axelstad M., Dalgaard M., Boberg J., Andeasen H.R., Vinggaard A.M., 2007. Endocrine-disrupting activities in vivo of the fungicides tebuconazole and epoxiconazole. Toxicological Sci. 100(2), 464–473.
  • Torriani S.F., Melichar J.P., Mills C., Pain N., Sierotzki H., Courbot M., 2015. Zymoseptoria tritici: A major threat to wheat production, integrated approaches to control. Fungal Gen. Biol. 79, 8–12.
  • Ustawa z dnia 8 marca 2013 r. o środkach ochrony roślin. Dz.U. 2013, poz. 455.
  • Wachowska U., 2010. Charakterystyka fungicydów strobilurynowych z uwzględnieniem problemu odporności fitopatogenów (artykuł przeglądowy). Post. Nauk Roln. 30, 77–88.
  • Wachowska U., Mikołajczyk W., Kucharska K., 2012. Skuteczność tebukonazolu i tiofanatu metylu w ograniczaniu rozwoju patogenów rodzaju Fusarium na kłosach pszenicy ozimej. Prog. Plant Prot. 52(3), 671–675.
  • Wu D.X., Zhang X.K., Wang J., Wang J.X., Ming-Guo Zhou M.G., Chang-Jun Chen C.J., 2014. Baseline sensitivity of Botrytis cinerea and risk assessment of developing resistance to the novel fungicide Y5247. Australasian Plant Pathol. 43, 639–651.
  • Xing K., Zhu X. Peng X. Qin S., 2014. Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agron. Sustain. Dev., doi 10.1007/s13593-014-0252-3.
  • Xiong C., Adney W.S., Vinzant T.B., Chou Y.C., Himmel M.E., Thomas S.R., 2015. Succinate dehydrogenase: an ideal target for fungicide discovery. W: P. Maienfisch, Th.M. Stevenson (red.). Discovery and Synthesis of Crop Protection Products, 175–195.
  • Zhu B., Liu L., Gong Y.X., Ling F., Wang G.X., 2014. Triazole-induced toxicity in developing rare minnow (Gobiocypris rarus) embryos. Environ. Sci. Pollut. Res. 21, 13625–13635.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c50bb0db-6036-4301-80a9-4b0ff044b31e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.