PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 18 | 1 |

Tytuł artykułu

Subcellular localization of full-length human myeloid leukemia factor 1 (MLF1) is independent of 14-3-3 proteins

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Myeloid leukemia factor 1 (MLF1) is associated with the development of leukemic diseases such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, information on the physiological function of MLF1 is limited and mostly derived from studies identifying MLF1 interaction partners like CSN3, MLF1IP, MADM, Manp and the 14-3-3 proteins. The 14-3-3-binding site surrounding S34 is one of the only known functional features of the MLF1 sequence, along with one nuclear export sequence (NES) and two nuclear localization sequences (NLS). It was recently shown that the subcellular localization of mouse MLF1 is dependent on 14-3-3 proteins. Based on these findings, we investigated whether the subcellular localization of human MLF1 was also directly 14-3-3-dependent. Live cell imaging with GFP-fused human MLF1 was used to study the effects of mutations and deletions on its subcellular localization. Surprisingly, we found that the subcellular localization of full-length human MLF1 is 14-3-3-independent, and is probably regulated by other as-yet-unknown proteins.

Wydawca

-

Rocznik

Tom

18

Numer

1

Opis fizyczny

p.137-148,fig.,ref.

Twórcy

autor
  • Chemical Genomics Centre of the Max-Planck-Society, Otto-Hahn Strasse 15, 44227 Dortmund, Germany
autor

Bibliografia

  • 1. Matsumoto, N., Yoneda-Kato, N., Iguchi, T., Kishimoto, Y., Kyo, T., Sawada, H., Tatsumi, E. and Fukuhara, S. Elevated MLF1 expression correlates with malignant progression from myelodysplastic syndrome. Leukemia 14 (2000) 1757-1765.
  • 2. Sun, W., Zhang, K., Zhang, X., Lei, W., Xiao, T., Ma, J., Guo, S., Shao, S., Zhang, H., Liu, Y., Yuan, J., Hu, Z., Ma, Y., Feng, X., Hu, S., Zhou, J., Cheng, S. and Gao, Y. Identification of differentially expressed genes in human lung squamous cell carcinoma using suppression subtractive hybridization. Cancer Lett. 212 (2004) 83-93.
  • 3. Chen, J., Guo, L., Peiffer, D.A., Zhou, L., Chan, O.T.M., Bibikova, M., Wickham-Garcia, E., Lu, S.-H., Zhan, Q., Wang-Rodriguez, J., Jiang, W. and Fan, J.B. Genomic profiling of 766 cancer-related genes in archived esophageal normal and carcinoma tissues. Int. J. Cancer 122 (2008) 2249-2254.
  • 4. Winteringham, L.N., Kobelke, S., Williams, J.H., Ingley, E. and Klinken, S.P. Myeloid leukemia factor 1 inhibits erythropoietin-induced differentiation, cell cycle exit and p27Kip1 accumulation. Oncogene 23 (2004) 5105-5109.
  • 5. Yoneda-Kato, N. and Kato, J.-Y. Shuttling imbalance of MLF1 results in p53 instability and increases susceptibility to oncogenic transformation. Mol. Cell Biol. 28 (2008) 422-434.
  • 6. Bras, S., Martin-Lannerée, S., Gobert, V., Augé, B., Breig, O., Sanial, M., Yamaguchi, M., Haenlin, M., Plessis, A. and Waltzer, L. Myeloid Leukemia Factor is a conserved regulator of RUNX transcription factor activity involved in hematopoiesis. Proc. Natl. Acad. Sci. USA 109 (2012) 4986-4991.
  • 7. Gobert, V., Haenlin, M. and Waltzer, L. Myeloid Leukemia Factor: A return ticket from human leukemia to fly hematopoiesis. Transcription 3 (2012) Epub ahead of print.
  • 8. Yoneda-Kato, N., Look, A.T., Kirstein, M.N., Valentine, M.B., Raimondi, S.C., Cohen, K.J., Carroll, A.J. and Morris, S.W. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene 12 (1996) 265-275.
  • 9. Olson, M.O., Wallace, M.O., Herrera, A.H., Marshall-Carlson, L. and Hunt, R.C. Preribosomal ribonucleoprotein particles are a major component of a nucleolar matrix fraction. Biochemistry 25 (1986) 484-491.
  • 10. Falini, B., Bigerna, B., Pucciarini, A., Tiacci, E., Mecucci, C., Morris, S.W., Bolli, N., Rosati, R., Hanissian, S., Ma, Z., Sun, Y., Colombo, E., Arber, D.A., Pacini, R., La Starza, R., Verducci Galletti, B., Liso, A., Martelli, M.P., Diverio, D., Pelicci, P.G., Lo Coco, F. and Martelli, M.F. Aberrant subcellular expression of nucleophosmin and NPM-MLF1 fusion protein in acute myeloid leukaemia carrying t(3;5): a comparison with NPMc+ AML. Leukemia 20 (2006) 368-371.
  • 11. Winteringham, L.N., Endersby, R., Kobelke, S., McCulloch, R.K., Williams, J.H., Stillitano, J., Cornwall, S.M., Ingley, E. and Klinken, S.P. Myeloid leukemia factor 1 associates with a novel heterogeneous nuclear ribonucleoprotein U-like molecule. J. Biol. Chem. 281 (2006) 38791-38800.
  • 12. Yoneda-Kato, N., Tomoda, K., Umehara, M., Arata, Y. and Kato, J.-Y. Myeloid leukemia factor 1 regulates p53 by suppressing COP1 via COP9 signalosome subunit 3. EMBO J. 24 (2005) 1739-1749.
  • 13. Hanissian, S.H., Akbar, U., Teng, B., Janjetovic, Z., Hoffmann, A., Hitzler, J.K., Iscove, N., Hamre, K., Du, X., Tong, Y., Mukatira, S., Robertson, J.H. and Morris, S.W. cDNA cloning and characterization of a novel gene encoding the MLF1-interacting protein MLF1IP. Oncogene 23 (2004) 3700- 3707.
  • 14. Hanissian, S.H., Teng, B., Akbar, U., Janjetovic, Z., Zhou, Q., Duntsch, C. and Robertson, J.H. Regulation of myeloid leukemia factor-1 interacting protein (MLF1IP) expression in glioblastoma. Brain Res. 1047 (2005) 56-64.
  • 15. Lim, R., Winteringham, L.N., Williams, J.H., McCulloch, R.K., Ingley, E., Tiao, J.Y.H., Lalonde, J.-P., Tsai, S., Tilbrook, P.A., Sun, Y., Wu, X., Morris, S.W. and Klinken, S.P. MADM, a novel adaptor protein that mediates phosphorylation of the 14-3-3 binding site of myeloid leukemia factor 1. J. Biol. Chem. 277 (2002) 40997-41008.
  • 16. Ohno, K., Takahashi, Y., Hirose, F., Inoue, Y.H., Taguchi, O., Nishida, Y., Matsukage, A. and Yamaguchi, M. Characterization of a Drosophila homologue of the human myelodysplasia/myeloid leukemia factor (MLF). Gene 260 (2000) 133-143.
  • 17. Molzan, M., Weyand, M., Rose, R. and Ottmann, C. Structural insights of the MLF1/14-3-3 interaction. FEBS J. 279 (2012) 563-571.
  • 18. Bridges, D. and Moorhead, G.B.G. 14-3-3 proteins: a number of functions for a numbered protein. Sci STKE 2005 (2005) 1-8.
  • 19. Yaffe, M.B., Rittinger, K., Volinia, S., Caron, P.R., Aitken, A., Leffers, H., Gamblin, S.J., Smerdon, S.J., Cantley, L.C. and Street, W. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91 (1997) 961-971.
  • 20. Johnson, C., Crowther, S., Stafford, M.J., Campbell, D.G., Toth, R. and MacKintosh, C. Bioinformatic and experimental survey of 14-3-3-binding sites. Biochem. J. 427 (2010) 69-78.
  • 21. Morrison, D.K. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol. 19 (2009) 16-23.
  • 22. Conklin, D.S., Galaktionov, K. and Beach, D. 14-3-3 Proteins associate with Cdc25 phosphatases. Proc. Natl. Acad. Sci. USA 92 (1995) 7892-7896.
  • 23. Peng, C.-Y., Graves, P.R., Thoma, R.S., Wu, Z., Shaw, A.S. and PiwnicaWorms, H. Mitotic and G2 Checkpoint control: Regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277 (1997) 1501-1505.
  • 24. Fantl, W.J., Muslin, A.J., Kikuchi, A., Martin, J.A., MacNicol, A.M., Gross, R.W. and Williams, L.T. Activation of Raf-1 by 14-3-3 proteins. Nature 371 (1994) 612-614.
  • 25. Molzan, M., Schumacher, B., Ottmann, C., Baljuls, A., Polzien, L., Weyand, M., Thiel, P., Rose, R., Rose, M., Kuhenne, P., Kaiser, M., Rapp, U.R., Kuhlmann, J. and Ottmann, C. Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling. Mol. Cell Biol. 30 (2010) 4698-4711.
  • 26. Vassilev, A., Kaneko, K.J., Shu, H., Zhao, Y. and Depamphilis, M.L. TEAD /TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev. 15 (2001) 1229-1241.
  • 27. Schumacher, B., Skwarczynska, M., Rose, R. and Ottmann, C. Structure of a 14-3-3σ-YAP phosphopeptide complex at 1.15 A resolution. Acta Crystallogr. F 66 (2010) 978-984.
  • 28. Rajagopalan, S., Sade, R.S., Townsley, F.M. and Fersht, A.R. Mechanistic differences in the transcriptional activation of p53 by 14-3-3 isoforms. Nucleic Acids Res. 38 (2010) 893-906.
  • 29. Schumacher, B., Mondry, J., Thiel, P., Weyand, M. and Ottmann, C. Structure of the p53 C-terminus bound to 14-3-3: implications for stabilization of the p53 tetramer. FEBS Lett. 584 (2010) 1443-1448.
  • 30. Hermeking, H. The 14-3-3 cancer connection. Nat. Rev. Cancer 3 (2003) 931-943.
  • 31. Fu, H., Coburn, J. and Collier, R.J. The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family. Proc. Natl. Acad. Sci. USA 90 (1993) 2320-2324.
  • 32. Ottmann, C., Yasmin, L., Weyand, M., Veesenmeyer, J.L., Diaz, M.H., Palmer, R.H., Francis, M.S., Hauser, A.R., Wittinghofer, A. and Hallberg, B. Phosphorylation-independent interaction between 14-3-3 and exoenzyme S: from structure to pathogenesis. EMBO J. 26 (2007) 902-913.
  • 33. Berg, D., Holzmann, C. and Riess, O. 14-3-3 Proteins in the nervous system. Nat. Rev. Neurosci. 4 (2003) 752-762.
  • 34. Van Der Heide, L.P., Hoekman, M.F.M. and Smidt, M.P. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem. J. 380 (2004) 297-309.
  • 35. Kanai, F., Marignani, P.A., Sarbassova, D., Yagi, R., Hall, R.A., Donowitz, M., Hisaminato, A., Fujiwara, T., Ito, Y., Cantley, L.C. and Yaffe, M.B. TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J. 19 (2000) 6778-6791.
  • 36. Aitken, A., Collinge, D.B., van Heusden, B.P.H., Isobe, T., Roseboom, P.H., Rosenfeld, G. and Soll, J. 14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins. Trends Biochem. Sci. 17 (1992) 498-501.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c3129e6c-93f3-451d-9967-eb4154b1147a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.