PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 83 | 4 |

Tytuł artykułu

Paulinella chromatophora - rethinking the transition from endosymbiont to organelle

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Eukaryotes co-opted photosynthetic carbon fixation from prokaryotes by engulfing a cyanobacterium and stably integrating it as a photosynthetic organelle (plastid) in a process known as primary endosymbiosis. The sheer complexity of interactions between a plastid and the surrounding cell that started to evolve over 1 billion years ago, make it challenging to reconstruct intermediate steps in organelle evolution by studying extant plastids. Recently, the photosynthetic amoeba Paulinella chromatophora was identified as a much sought-after intermediate stage in the evolution of a photosynthetic organelle. This article reviews the current knowledge on this unique organism. In particular it describes how the interplay of reductive genome evolution, gene transfers, and trafficking of host-encoded proteins into the cyanobacterial endosymbiont contributed to transform the symbiont into a nascent photosynthetic organelle. Together with recent results from various other endosymbiotic associations a picture emerges that lets the targeting of host-encoded proteins into bacterial endosymbionts appear as an early step in the establishment of an endosymbiotic relationship that enables the host to gain control over the endosymbiont.

Wydawca

-

Rocznik

Tom

83

Numer

4

Opis fizyczny

p.387-397,fig.,ref.

Twórcy

  • Department of Biology, Heinrich-Heine-Universiat Dusseldorf, Universitatsstrasse 1, 40225 Dusseldorf, Germany

Bibliografia

  • 1. Dorrell RG, Howe CJ. What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses. J Cell Sci.2012;125(8):1865–1875. http://dx.doi.org/10.1242/jcs.102285
  • 2. Dyall SD, Brown MT, Johnson PJ. Ancient invasions: from endosymbionts to organelles. Science. 2004;304(5668):253–257. http://dx.doi.org/10.1126/science.1094884
  • 3. Parfrey LW, Lahr DJG, Knoll AH, Katz LA. Estimating the timing of early eukaryotic diversification with multigene molecular clocks.Proc Natl Acad Sci USA. 2011;108(33):13624–13629. http://dx.doi. org/10.1073/pnas.1110633108
  • 4. Weber A, Flügge UI. Interaction of cytosolic and plastidic nitrogen metabolism in plants. J Exp Bot. 2002;53(370):865–874. http://dx.doi.org/10.1093/jexbot/53.370.865
  • 5. Balk J, Lobréaux S. Biogenesis of iron–sulfur proteins in plants. Trends Plant Sci. 2005;10(7):324–331. http://dx.doi.org/10.1016/j.tplants.2005.05.002
  • 6. Wang Z, Benning C. Chloroplast lipid synthesis and lipid trafficking through ER–plastid membrane contact sites. Biochem Soc Trans.2012;40(2):457–463. http://dx.doi.org/10.1042/BST20110752
  • 7. Lichtenthaler HK, Schwender J, Disch A, Rohmer M. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonateindependentpathway. FEBS Lett. 1997;400(3):271–274. http://dx.doi. org/10.1016/S0014-5793(96)01404-4
  • 8. Herrmann KM, Weaver LM. The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol. 1999;50(1):473–503. http://dx.doi.org/10.1146/annurev.arplant.50.1.473
  • 9. Hanson AD, Gregory III JF. Synthesis and turnover of folates in plants. Curr Opin Plant Biol. 2002;5(3):244–249. http://dx.doi.org/10.1016/S1369-5266(02)00249-2
  • 10. Witz S, Jung B, Fürst S, Möhlman T. De novo pyrimidine nucleotide synthesis mainly occurs outside of plastids, but a previously undiscoverednucleobase importer provides substrates for the essentialsalvage pathway in Arabidopsis. Plant Cell. 2012;24(4):1549–1559.http://dx.doi.org/10.1105/tpc.112.096743
  • 11. Maurino VG, Peterhansel C. Photorespiration: current status and approaches for metabolic engineering. Curr Opin Plant Biol.2010;13(3):248–255. http://dx.doi.org/10.1016/j.pbi.2010.01.006
  • 12. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplastgenomes reveals plastid phylogeny and thousands of cyanobacterialgenes in the nucleus. Proc Natl Acad Sci USA. 2002;99(19):12246–12251. http://dx.doi.org/10.1073/pnas.182432999
  • 13. Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat RevGenet. 2004;5(2):123–135. http://dx.doi.org/10.1038/nrg1271
  • 14. Schleiff E, Becker T. Common ground for protein translocation: access control for mitochondria and chloroplasts. Nat Rev Mol Cell Biol.2011;12(1):48–59. http://dx.doi.org/10.1038/nrm3027
  • 15. Flügge UI, Häusler RE, Ludewig F, Gierth M. The role of transporters in supplying energy to plant plastids. J Exp Bot. 2011;62(7):2381–2392.http://dx.doi.org/10.1093/jxb/erq361
  • 16. Weber AP. Solute transporters as connecting elements between cytosol and plastid stroma. Curr Opin Plant Biol. 2004;7(3):247–253. http://dx.doi.org/10.1016/j.pbi.2004.03.008
  • 17. Pick TR, Weber APM. Unknown components of the plastidial permeome. Front Plant Sci. 2014;5:410. http://dx.doi.org/10.3389/fpls.2014.00410
  • 18. Chi W, Sun X, Zhang L. Intracellular signaling from plastid to nucleus. Annu Rev Plant Biol. 2013;64(1):559–582. http://dx.doi.org/10.1146/annurev-arplant-050312-120147
  • 19. Barkan A. Expression of plastid genes: organelle-specific elaborations on a prokaryotic scaffold. Plant Physiol. 2011;155(4):1520–1532. http://dx.doi.org/10.1104/pp.110.171231
  • 20. Miyagishima S. Mechanism of plastid division: from a bacterium to an organelle. Plant Physiol. 2011;155(4):1533–1544. http://dx.doi.org/10.1104/pp.110.170688
  • 21. Archibald JM. The puzzle of plastid evolution. Curr Biol. 2009;19(2):R81–R88. http://dx.doi.org/10.1016/j.cub.2008.11.067
  • 22. Gould SB, Waller RF, McFadden GI. Plastid evolution. Annu Rev Plant Biol. 2008;59(1):491–517. http://dx.doi.org/10.1146/annurev. arplant.59.032607.092915
  • 23. Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, et al. The highly reduced genome of an enslaved algal nucleus. Nature.2001;410(6832):1091–1096. http://dx.doi.org/10.1038/35074092
  • 24. Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI. Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature’s smallest nucleus. Proc Natl Acad Sci USA. 2006;103(25):9566–9571. http://dx.doi.org/10.1073/pnas.0600707103
  • 25. Marin B, Nowack ECM, Melkonian M. A plastid in the making: evidence for a second primary endosymbiosis. Protist. 2005;156(4):425–432. http://dx.doi.org/10.1016/j.protis.2005.09.001
  • 26. Nowack ECM, Grossman AR. Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora.Proc Natl Acad Sci USA. 2012;109(14):5340–5345. http://dx.doi.org/10.1073/pnas.1118800109
  • 27. Nowack ECM, Melkonian M, Glöckner G. Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis byeukaryotes. Curr Biol. 2008;18(6):410–418. http://dx.doi.org/10.1016/j.cub.2008.02.051
  • 28. Lauterborn R. Protozoenstudien. Z Wiss Zool. 1895;59:537–544.
  • 29. Melkonian M. Robert Lauterborn (1869–1952) and his Paulinella chromatophora. Protist. 2005;156(2):253–262. http://dx.doi.org/10.1016/j.protis.2005.06.001
  • 30. Pankow H. Paulinella chromatophora Lauterb., eine bisher nur im Süßwasser nachgewiesene Thekamöbe, in den Boddengewässern des Darßand des Zingst (südliche Ostsee). Arch Protistenkd. 1982;126(3):261–263. http://dx.doi.org/10.1016/S0003-9365(82)80036-5
  • 31. Geitler L. Bemerkungen zu Paulinella chromatophora. Zool Anz. 1927;72:333–334.
  • 32. Penard E. Notes sur quelques Sarcodinés – 12. Paulinella chromatophora Lauterborn. Rev Suisse Zool. 1905;13:585–616.
  • 33. Hoogenraad HR. Zur Kenntnis der Fortpflanzung von Paulinella chromatophora Lauterb. Zool Anz. 1927;72:140–150.
  • 34. Brown JM. Freshwater rhizopods from the English lake district. Zool J Linn Soc. 1910;30(201):360–368. http://dx.doi.org/10.1111/j.1096-3642.1910.tb02142.x
  • 35. Lackey JB. Some fresh water protozoa with blue chromatophores. Biol Bull. 1936;71(3):492–497.
  • 36. Yoon HS, Nakayama T, Reyes-Prieto A, Andersen RA, Boo SM, Ishida KI, et al. A single origin of the photosynthetic organelle indifferent Paulinella lineages. BMC Evol Biol. 2009;9(1):98. http://dx.doi.org/10.1186/1471-2148-9-98
  • 37. Nicholls KH. Six new marine species of the genus Paulinella (Rhizopoda: Filosea, or Rhizaria: Cercozoa). J Mar Biol Assoc UK. 2009;89(07):1415–1425. http://dx.doi.org/10.1017/S0025315409000514
  • 38. Melkonian M, Surek B. Famous algal isolates from the Spessart forest (Germany): the legacy of Dieter Mollenhauer. Algol Stud. 2009;129(1):1–23. http://dx.doi.org/10.1127/1864-1318/2009/0129-0001
  • 39. Hannah F, Rogerson A, Anderson OR. A description of Paulinella indentata n. sp. (Filosea: Euglyphina) from subtidal coastal benthicsediments. J Eukaryot Microbiol. 1996;43(1):1–4. http://dx.doi.org/10.1111/j.1550-7408.1996.tb02464.x
  • 40. Johnson PW, Hargraves PE, Sieburth JM. Ultrastructure and ecology of Calycomonas ovalis Wulff, 1919, (Chrysophyceae) and its redescription as a testate rhizopod, Paulinella ovalis n. comb. (Filosea:Euglyphina). J Protozool. 1988;35(4):618–626. http://dx.doi.org/10.1111/j.1550-7408.1988.tb04160.x
  • 41. Kies L. Electron microscopical investigations on Paulinella chromatophora Lauterborn, a thecamoeba containing blue-green endosymbionts(Cyanelles). Protoplasma. 1974;80(1):69–89.
  • 42. Nomura M, Nakayama T, Ishida K. Detailed process of shell construction in the photosynthetic testate amoeba Paulinella chromatophora(Euglyphid, Rhizaria). J Eukaryot Microbiol. 2014;61(3):317–321.http://dx.doi.org/10.1111/jeu.12102
  • 43. Kies L, Kremer BP. Function of cyanelles in the thecamoeba Paulinella chromatophora. Naturwissenschaften. 1979;66(11):578–579. http:// dx.doi.org/10.1007/BF00368819
  • 44. Bhattacharya D, Helmchen T, Melkonian M. Molecular evolutionary analyses of nuclear-encoded small subunit ribosomal RNA identifyan independent rhizopod lineage containing the Euglyphina and theChlorarachniophyta. J Eukaryot Microbiol. 1995;42(1):65–69. http://x.doi.org/10.1111/j.1550-7408.1995.tb01541.x
  • 45. Cavalier-Smith T, Chao EEY. Phylogeny and classification of phylum Cercozoa (Protozoa). Protist. 2003;154(3–4):341–358. http://dx.doi.org/10.1078/143446103322454112
  • 46. Moreira D, von der Heyden S, Bass D, López-García P, Chao E, Cavalier-Smith T. Global eukaryote phylogeny: combined small- andlarge-subunit ribosomal DNA trees support monophyly of Rhizaria,Retaria and Excavata. Mol Phylogenet Evol. 2007;44(1):255–266.http://dx.doi.org/10.1016/j.ympev.2006.11.001
  • 47. McFadden GI, Gilson PR, Hofmann CJ, Adcock GJ, Maier UG. Evidence that an amoeba acquired a chloroplast by retaining part of an engulfedeukaryotic alga. Proc Natl Acad Sci USA. 1994;91(9):3690–3694.
  • 48. Raven JA. Carboxysomes and peptidoglycan walls of cyanelles: possible physiological functions. Eur J Phycol. 2003;38(1):47–53. http://dx.doi.org/10.1080/0967026031000096245
  • 49. Marin B, Nowack EC, Glöckner G, Melkonian M. The ancestor of the Paulinella chromatophore obtained a carboxysomal operon by horizontalgene transfer from a Nitrococcus-like γ-proteobacterium. BMCEvol Biol. 2007;7(1):85. http://dx.doi.org/10.1186/1471-2148-7-85
  • 50. Delwiche CF, Palmer JD. Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol Biol Evol. 1996;13(6):873–882.
  • 51. Valentin K, Zetsche K. Structure of the Rubisco operon from the unicellular red alga Cyanidium caldarium: evidence for a polyphyleticorigin of the plastids. Mol Gen Genet. 1990;222(2–3):425–430.
  • 52. Yoon HS, Reyes-Prieto A, Melkonian M, Bhattacharya D. Minimal plastid genome evolution in the Paulinella endosymbiont. Curr Biol.2006;16(17):R670–R672. http://dx.doi.org/10.1016/j.cub.2006.08.018
  • 53. McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol. 2012;10:13–26. http://dx.doi.org/10.1038/nrmicro2670
  • 54. Tyra HM, Linka M, Weber AP, Bhattacharya D. Host origin of plastid solute transporters in the first photosynthetic eukaryotes. GenomeBiol. 2007;8(10):R212. http://dx.doi.org/10.1186/gb-2007-8-10-r212
  • 55. Berney C, Pawlowski J. A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proc R Soc B.2006;273(1596):1867–1872. http://dx.doi.org/10.1098/rspb.2006.3537
  • 56. Reyes-Prieto A, Yoon HS, Moustafa A, Yang EC, Andersen RA, Boo SM, et al. Differential gene retention in plastids of commonrecent origin. Mol Biol Evol. 2010;27(7):1530–1537. http://dx.doi.org/10.1093/molbev/msq032
  • 57. Nakayama T, Ishida KI. Another acquisition of a primary photosynthetic organelle is underway in Paulinella chromatophora. Curr Biol. 2009;19(7):R284–R285. http://dx.doi.org/10.1016/j.cub.2009.02.043
  • 58. Nowack ECM, Vogel H, Groth M, Grossman AR, Melkonian M, Glöckner G. Endosymbiotic gene transfer and transcriptional regulationof transferred genes in Paulinella chromatophora. Mol Biol Evol.2011;28(1):407–422. http://dx.doi.org/10.1093/molbev/msq209
  • 59. Andersson JO. Lateral gene transfer in eukaryotes. Cell Mol Life Sci. 2005;62(11):1182–1197. http://dx.doi.org/10.1007/s00018-005-4539-z
  • 60. Doolittle WF. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet.1998;14(8):307–311. http://dx.doi.org/10.1016/S0168-9525(98)01494-2
  • 61. Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet. 2008;9(8):605–618. http://dx.doi.org/10.1038/nrg2386
  • 62. Larkum AWD, Lockhart PJ, Howe CJ. Shopping for plastids. Trends Plant Sci. 2007;12(5):189–195. http://dx.doi.org/10.1016/j.tplants.2007.03.011
  • 63. Ball S, Colleoni C, Cenci U, Raj JN, Tirtiaux C. The evolution of glycogen and starch metabolism in eukaryotes gives molecular cluesto understand the establishment of plastid endosymbiosis. J Exp Bot.2011;62(6):1775–1801. http://dx.doi.org/10.1093/jxb/erq411
  • 64. Becker B, Hoef-Emden K, Melkonian M. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes. BMC Evol Biol.2008;8(1):203. http://dx.doi.org/10.1186/1471-2148-8-203
  • 65. Facchinelli F, Colleoni C, Ball SG, Weber APM. Chlamydia, cyanobiont, or host: who was on top in the ménage à trois? Trends Plant Sci.2013;18(12):673–679. http://dx.doi.org/10.1016/j.tplants.2013.09.006
  • 66. Huang J, Gogarten J. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol.2007;8(6):R99. http://dx.doi.org/10.1186/gb-2007-8-6-r99
  • 67. Fuentes I, Karcher D, Bock R. Experimental reconstruction of the functional transfer of intron-containing plastid genes to the nucleus. CurrBiol. 2012;22(9):763–771. http://dx.doi.org/10.1016/j.cub.2012.03.005
  • 68. Hanekamp T, Thorsness PE. Inactivation of YME2/RNA12, which encodes an integral inner mitochondrial membrane protein, causesincreased escape of DNA from mitochondria to the nucleus in Saccharomycescerevisiae. Mol Cell Biol. 1996;16(6):2764–2771.
  • 69. Lister DL, Bateman JM, Purton S, Howe CJ. DNA transfer from chloroplast to nucleus is much rarer in Chlamydomonas than in tobacco. Gene. 2003;316:33–38. http://dx.doi.org/10.1016/ S0378-1119(03)00754-6
  • 70. Sheppard AE, Ayliffe MA, Blatch L, Day A, Delaney SK, Khairul-Fahmy N, et al. Transfer of plastid DNA to the nucleus is elevated during malegametogenesis in tobacco. Plant Physiol. 2008;148(1):328–336. http://dx.doi.org/10.1104/pp.108.119107
  • 71. Hazkani-Covo E, Zeller RM, Martin W. Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet. 2010;6(2):e1000834. http://dx.doi.org/10.1371/journal. pgen.1000834
  • 72. Bhattacharya D, Price DC, Yoon HS, Yang EC, Poulton NJ, Andersen RA, et al. Single cell genome analysis supports a link betweenphagotrophy and primary plastid endosymbiosis. Sci Rep. 2012;2:356.http://dx.doi.org/10.1038/srep00356
  • 73. Selosse MA, Albert B, Godelle B. Reducing the genome size of organelles favours gene transfer to the nucleus. Trends Ecol Evol. 2001;16(3):135– 141. http://dx.doi.org/10.1016/S0169-5347(00)02084-X
  • 74. Havaux M, Guedeney G, He Q, Grossman AR. Elimination of highlight-inducible polypeptides related to eukaryotic chlorophyll a/bbindingproteins results in aberrant photoacclimation in SynechocystisPCC6803. Biochim Biophys Acta. 2003;1557:21–33. http://dx.doi.org/10.1016/S0005-2728(02)00391-2
  • 75. He Q, Dolganov N, Björkman O, Grossman AR. The high lightinducible polypeptides in Synechocystis PCC6 expression and functionin high light. J Biol Chem. 2001;276(1):306–314. http://dx.doi.org/10.1074/jbc.M008686200
  • 76. Bodył A, Mackiewicz P, Stiller JW. Comparative genomic studies suggest that the cyanobacterial endosymbionts of the amoebaPaulinella chromatophora possess an import apparatus for nuclearencodedproteins. Plant Biol. 2010;12:639–649. http://dx.doi.org/10.1111/j.1438-8677.2009.00264.x
  • 77. Mackiewicz P, Bodył A, Gagat P. Possible import routes of proteins into the cyanobacterial endosymbionts/plastids of Paulinellachromatophora. Theory Biosci. 2012;131(1):1–18. http://dx.doi.org/10.1007/s12064-011-0147-7
  • 78. Nowack ECM. Paulinella chromatophora – a model for the acquisition of photosynthesis by eukaryotes [PhD thesis]. Cologne: Universityof Cologne; 2009.
  • 79. Bodył A, Mackiewicz P, Stiller JW. Early steps in plastid evolution: current ideas and controversies. Bioessays. 2009;31(11):1219–1232.http://dx.doi.org/10.1002/bies.200900073
  • 80. Mackiewicz P, Bodył A. A hypothesis for import of the nuclearencoded PsaE protein of Paulinella chromatophora (cercozoa,rhizaria) into its cyanobacterial endosymbionts/plastids via theendomembrane system. J Phycol. 2010;46(5):847–859. http://dx.doi.org/10.1111/j.1529-8817.2010.00876.x
  • 81. Nanjo Y, Oka H, Ikarashi N, Kaneko K, Kitajima A, Mitsui T, et al. Rice plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase is transported from the ER-Golgi to the chloroplast through the secretory pathway. Plant Cell. 2006;18(10):2582–2592. http://dx.doi.org/10.1105/tpc.105.039891
  • 82. Villarejo A, Burén S, Larsson S, Déjardin A, Monné M, Rudhe C, et al. Evidence for a protein transported through the secretorypathway en route to the higher plant chloroplast. Nat Cell Biol.2005;7(12):1224–1231. http://dx.doi.org/10.1038/ncb1330
  • 83. Bhattacharya D, Archibald JM, Weber APM, Reyes-Prieto A. How do endosymbionts become organelles? Understanding early events in plastid evolution. Bioessays. 2007;29(12):1239–1246. http://dx.doi. org/10.1002/bies.20671
  • 84. Gagat P, Bodył A, Mackiewicz P. How protein targeting to primary plastids via the endomembrane system could have evolved? A newhypothesis based on phylogenetic studies. Biol Direct. 2013;8(1):18.http://dx.doi.org/10.1186/1745-6150-8-18
  • 85. Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N, Vaulot D, et al. Unicellular cyanobacterium symbiotic with a single-celledeukaryotic alga. Science. 2012;337(6101):1546–1550. http://dx.doi.org/10.1126/science.1222700
  • 86. Nakayama T, Kamikawa R, Tanifuji G, Kashiyama Y, Ohkouchi N, Archibald JM, et al. Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle. Proc Natl Acad Sci USA. 2014;111(31):11407–11412. http:// dx.doi.org/10.1073/pnas.1405222111
  • 87. Prechtl J, Kneip C, Lockhart P, Wenderoth K, Maier UG. Intracellular spheroid bodies of Rhopalodia gibba have nitrogen-fixing apparatusof cyanobacterial origin. Mol Biol Evol. 2004;21(8):1477–1481. http://dx.doi.org/10.1093/molbev/msh086
  • 88. Cavalier-Smith T, Lee JJ. Protozoa as hosts for endosymbioses and the conversion of symbionts into organelles. J Protozool. 1985;32(3):376– 379. http://dx.doi.org/10.1111/j.1550-7408.1985.tb04031.x
  • 89. Theissen U, Martin W. The difference between organelles and endosymbionts. Curr Biol. 2006;16(24):R1016–R1017. http://dx.doi.org/10.1016/j.cub.2006.11.020
  • 90. Bhattacharya D, Archibald JM. The difference between organelles and endosymbionts – response to Theissen and Martin. Curr Biol.2006;16(24):R1017–R1018. http://dx.doi.org/10.1016/j.cub.2006.11.021
  • 91. Bodył A, Mackiewicz P, Stiller JW. The intracellular cyanobacteria of Paulinella chromatophora: endosymbionts or organelles? Trends Microbiol.2007;15(7):295–296. http://dx.doi.org/10.1016/j.tim.2007.05.002
  • 92. Bodył A, Mackiewicz P, Gagat P. Organelle evolution: Paulinella breaks a paradigm. Curr Biol. 2012;22(9):R304–R306. http://dx.doi.org/10.1016/j.cub.2012.03.020
  • 93. Wernegreen JJ. Strategies of genomic integration within insectbacterial mutualisms. Biol Bull. 2012;223(1):112–122.
  • 94. Nakabachi A, Ishida K, Hongoh Y, Ohkuma M, Miyagishima SY. Aphid gene of bacterial origin encodes a protein transported to anobligate endosymbiont. Curr Biol. 2014;24(14):R640–R641. http://dx.doi.org/10.1016/j.cub.2014.06.038
  • 95. Archibald JM. Back to the future. In: One plus one equals one: symbiosis and the evolution of complex life. Oxford: Oxford UniversityPress; 2014. p. 157–172.
  • 96. Reyes-Prieto M, Latorre A, Moya A. Scanty microbes, the “symbionelle” concept. Environ Microbiol. 2014;16(2):335–338. http://dx.doi.org/10.1111/1462-2920.12220
  • 97. van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, et al. Plant peptides govern terminal differentiation ofbacteria in symbiosis. Science. 2010;327(5969):1122–1126. http://dx.doi.org/10.1126/science.1184057
  • 98. Login FH, Balmand S, Vallier A, Vincent-Monegat C, Vigneron A, Weiss-Gayet M, et al. Antimicrobial peptides keep insect endosymbiontsunder control. Science. 2011;334(6054):362–365. http://dx.doi.org/10.1126/science.1209728
  • 99. Koga R, Meng XY, Tsuchida T, Fukatsu T. Cellular mechanism for selective vertical transmission of an obligate insect symbiontat the bacteriocyte-embryo interface. Proc Natl Acad SciUSA. 2012;109(20):E1230–E1237. http://dx.doi.org/10.1073/pnas.1119212109
  • 100. Nikoh N, McCutcheon JP, Kudo T, Miyagishima SY, Moran NA, Nakabachi A. Bacterial genes in the aphid genome: absence offunctional gene transfer from Buchnera to its host. PLoS Genet.2010;6(2):e1000827. http://dx.doi.org/10.1371/journal.pgen.1000827
  • 101. Nikoh N, Nakabachi A. Aphids acquired symbiotic genes via lateral gene transfer. BMC Biol. 2009;7(1):12. http://dx.doi.org/10.1186/1741-7007-7-12
  • 102. Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42(1):165–190.http://dx.doi.org/10.1146/annurev.genet.41.110306.130119
  • 103. Moya A, Peretó J, Gil R, Latorre A. Learning how to live together: genomic insights into prokaryote–animal symbioses. Nat Rev Genet.2008;9(3):218–229. http://dx.doi.org/10.1038/nrg2319
  • 104. Nowack ECM, Grossman AR. Evolutionary pressures and the establishment of endosymbiotic associations. In: Bakermans C, editor.Microbial evolution under extreme conditions. Berlin: De Gruyter;2015 (in press). p. 223–246.
  • 105. Nowack ECM, Melkonian M. Endosymbiotic associations within protists. Phil Trans R Soc B. 2010;365(1541):699–712. http://dx.doi.org/10.1098/rstb.2009.0188
  • 106. McCutcheon JP, McDonald BR, Moran NA. Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterialsymbiont. PLoS Genet. 2009;5(7):e1000565. http://dx.doi.org/10.1371/journal.pgen.1000565
  • 107. McCutcheon JP, Moran NA. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA. 2007;104(49):19392–19397. http://dx.doi.org/10.1073/ pnas.0708855104
  • 108. Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, et al. The 160-kilobase genome of the bacterial endosymbiont Carsonella.Science. 2006;314(5797):267–267. http://dx.doi.org/10.1126/science.1134196
  • 109. Tamames J, Gil R, Latorre A, Peretó J, Silva FJ, Moya A. The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii. BMC Evol Biol. 2007;7(1):181. http://dx.doi. org/10.1186/1471-2148-7-181

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c2b4e2e0-105f-4ffd-ae8f-74fe4cb1d794
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.