PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 77 | 2 |

Tytuł artykułu

Potential role of dopamine transporter in behavioral flexibility

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Behavioral flexibility is subserved by the prefrontal cortex and the basal ganglia. Orbitofrontal cortex (OFC) and dorsomedial striatum (DMS) form a functional frontocorticostriatal circuit crucial for the mediation of flexibility during reversal learning via dopamine (DA) neurotransmission. The regulatory control in maintaining DA homeostasis and function is provided by the dopamine transporter (DAT), which therefore likely plays a significant role in controlling the influence of DA on cognitive processes. Here we used a gene knockout mouse model to investigate the role of DAT in the performance on the Attentional Set‑Shifting Task (ASST) stages dependent upon the OFC and the DMS. Additionally, behavior of mice after repeated administration of selective DAT inhibitor, GBR 12909, was examined. The animals were treated with the inhibitor to elicit a compensatory DAT up‑regulation following withdrawal. Learning was slower and the number of errors during reversal learning and intra‑dimensional shift stages was higher in DAT+/− mutant mice than in WT mice. GBR 12909‑treated mice had deficits in reversal stages of the ASST. Neuronal activation in the OFC and DMS during the ASST was examined with early growth response proteins 1 and 2 (egr‑1, egr‑2) immunohistochemistry. Density of egr‑2 labeled cells in the OFC was lower in mutant mice than in wild‑types during reversal learning and the expression of the egr‑1 was lower in mutant mice in the OFC and DMS during reversal and intra‑dimensional shift stages. Mice with decreased DAT levels displayed behavioral difficulties that were accompanied by a lower task‑induced activation of neurons in brain regions involved in the reversal learning. Altogether, these data indicate the role of the DAT in the behavioral flexibility.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

77

Numer

2

Opis fizyczny

p.176-189,fig.,ref.

Twórcy

  • Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
autor
  • Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
  • Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
  • Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
autor
  • Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland

Bibliografia

  • Andersen PH (1989) The dopamine inhibitor GBR 12909: selectivity and molecular mechanism of action. Eur J Pharmacol 166(3): 493–504.
  • Arnsten AF (2006) Fundamentals of attention‑deficit/hyperactivity disorder: circuits and pathways. J Clin Psych 8: 7–12.
  • Baarendse PJ, Vanderschuren LJ (2012) Dissociable effects of monoamine reuptake inhibitors on distinct forms of impulsive behavior in rats. Psychopharmacology (Berl) 219(2): 313–326.
  • Baker PM, Ragozzino ME (2014) Contralateral disconnection of the rat prelimbic cortex and dorsomedial striatum impairs cue‑guided behavioral switching. Learn Mem 21(8): 368–379.
  • Berendse HW, Galis‑de Graaf Y, Groenewegen HJ (1992) Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 316(3): 314–347.
  • Biederman J, Faraone SV (2005) Attention‑deficit hyperactivity disorder. Lancet 366: 237–248.
  • Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20: 4320–4324.
  • Bissonette GB, Martins GJ, Franz TM, Harper ES, Schoenbaum G, Powell EM (2008) Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice. J  Neurosci 28(44): 11124–11130.
  • Bozon B, Davis S, Laroche S (2003) A requirement for the immediate early gene zif286 in reconsolidation of recognition memory after retrieval. Neuron 40: 695–701.
  • Boulougouris  V, Dalley JW, Robbins TW (2007) Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behav Brain Res 179: 219–228.
  • Boulougouris V, Castañé A, Robbins TW (2009) Dopamine D2/D3 receptor agonist quinpirole impairs spatial reversal learning in rats: investigation of D3 receptor involvement in persistent behavior. Psychopharmacology (Berl) 202(4): 611–620.
  • Cagniard B, Balsam PD, Brunner D, Zhuang X (2006a) Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward. Neuropsychopharmacology 31: 1362–1370. Cagniard B, Beeler JA, Britt JP, McGehee DS, Marinelli M, Zhuang X (2006b) Dopamine scales performance in the absence of new learning. Neuron 51: 541–547.
  • Calabresi P, Picconi B, Tozzi A, Di Filippo  M (2007) Dopaminemediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30: 211–219.
  • Calaminus C, Hauber W (2008) Guidance of instrumental behavior under reversal conditions requires dopamine D1 and D2 receptor activation in the orbitofrontal cortex. Neuroscience 154(4): 1195–1204.
  • Carboni E, Spielewoy C, Vacca C, Nosten‑Bertrand  M, Giros B, Di Chiara G (2001) Cocaine and amphetamine increase extracellular dopamine in the nucleus accumbens of mice lacking the dopamine transporter gene. J Neurosci 21(9): RC141: 1–4.
  • Castañé A, Theobald DE, Robbins TW (2010) Selective lesions of the dorsomedial striatum impair serial spatial reversal learning in rats. Behav Brain Res 210(1): 74–83.
  • Chase EA, Tait DS, Brown VJ (2012) Lesions of the orbital prefrontal cortex impair the formation of attentional set in rats. Eur J  Neurosci 36(3): 2368–2375.
  • Cheng J‑T, Li J‑S (2013) Intra‑orbitofrontal cortex injection of haloperidol removes the beneficial effect of methylphenidate on reversal learning of spontaneously hypertensive rats in an attentional set‑shifting task. Behav Brain Res 239: 148–154.
  • Clarke HF, Walker SC, Dalley JW, Robbins TW, Roberts AC (2007) Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. Cereb Cortex 17(1): 18–27.
  • Clarke HF, Robbins TW, Roberts AC (2008) Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex. J Neurosci 28(43): 10972–10982.
  • Cole AJ, Saffen DW, Baraban JM, Worley PF (1989) Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340: 474–476.
  • Cook EH Jr, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE, Leventhal  BL (1995) Association of attention‑deficit disorder and the dopamine transporter gene. Am J Hum Genet 56: 993–998.
  • Cools R (2006) Dopaminergic modulation of cognitive function‑ ‑implications for L‑DOPA treatment in Parkinson’s disease. Neurosci Biobehav Rev 30: 1–23.
  • Cools R, Lewis SJ, Clark L, Barker RA, Robbins TW (2007) L‑DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson’s disease. Neuropsychopharmacology 32: 180–189.
  • Cybulska‑Klosowicz A, Laczkowska M, Zakrzewska R, Kaliszewska A (submitted). Attentional deficits and impaired neuronal activity in medial prefrontal and posterior parietal cortices in mice with reduced dopamine transporter level. Del’Guidice T, Lemasson  M, Etiévant A, Manta S, Magno LA, Escoffier G, Roman FS, Beaulieu JM (2014) Dissociations between cognitive and motor effects of psychostimulants and atomoxetine in hyperactive DAT‑KO mice. Psychopharmacology (Berl) 231: 109–122.
  • DeSteno DA, Schmauss C (2008) Induction of early growth response gene 2 expression in the forebrain of mice performing an attention‑set‑shifting task. Neuroscience 152: 417–428.
  • Dias R, Robbins TW, Roberts AC (1996) Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380: 69–72.
  • Dias R, Robbins TW, Roberts AC (1997) Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: restriction to novel situations and independence from “on‑line” processing. J Neurosci 17(23): 9285–9297.
  • Divac I, Rosvold HE, Szwarcbart MK (1967) Behavioral effects of selective ablation of the caudate nucleus. J Comp Physiol Psychol 63(2): 184–190.
  • Dodds CM, Müller U, Clark  L, van Loon A, Cools R, Robbins TW (2008) Methylphenidate has differential effects on blood oxygenation level‑dependent signal related to cognitive subprocesses of reversal learning. J Neurosci 28(23): 5976–5982.
  • Evenden JL, Ryan CN (1996) The pharmacology of impulsive behaviour in rats: the effects of drugs on response choice with varying delays of reinforcement. Psychopharmacology (Berl) 128(2): 161–170.
  • Fox MA, Panessiti MG, Hall FS, Uhl GR, Murphy DL (2013) An evaluation of the serotonin system and perseverative, compulsive, stereotypical, and hyperactive behaviors in dopamine transporter (DAT) knockout mice. Psychopharmacology (Berl) 227: 685–695.
  • Franklin KBJ, Paxinos G (1997) The Mouse Brain in Stereotaxic Coordinates. San Diego: Academic Press, San Diego, CA, USA.
  • Gainetdinov RR, Caron MG (2003) Monoamine transporters: from genes to behavior. Annu Rev Pharmacol Toxicol 43: 261–284.
  • Gainetdinov RR, Jones SR, Caron MG (1999) Functional hyperdopaminergia in dopamine transporter knock‑out mice. Biol Psychiatry 46(3): 303–311.
  • Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379: 606–612.
  • Glickstein SB, Desteno DA, Hof PR, Schmauss C (2005) Mice lacking dopamine D2 and D3 receptors exhibit differential activation of prefrontal cortical neurons during tasks requiring attention. Cereb Cortex 15: 1016–1024.
  • Hall J, Thomas KL, Everitt BJ (2001) Cellular imaging of zif268 expression in the hippocampus and amygdala during contextual and cued fear memory retrieval: Selective activation of hippocampal CA1 neurons during the recall of contextual memories. J Neurosci 21: 2186–2193.
  • Haluk DM, Floresco SB (2009) Ventral striatal dopamine modulation of different forms of behavioral flexibility. Neuropsychopharmacology 34: 2041–2052.
  • Heikkila RE, Manzino  L (1984) Behavioral properties of GBR 12909, GBR 13069 and GBR 13098: specific inhibitors of dopamine uptake. Eur J Pharmacol 103: 241–248.
  • Hewitt KN, Shah YB, Prior MJ, Morris PG, Hollis CP, Fone KCF, Marsden CA (2005) Behavioural and pharmacological magnetic resonance imaging assessment of the effects of methylphenidate in a  potential new rat model of attention deficit hyperactivity disorder. Psychopharmacology 180 (4): 716–723.
  • Hewitt KN, Marsden CA, Hollis CP, Fone KCF (2009) Behavioural characterisation of the effects of acute and repeated administration of GBR 12909 in rats: further evaluation of a  potential model of ADHD. Neuropharmacology 57: 678–686.
  • Izquierdo A, Belcher AM, Scott L, Cazares VA, Chen J, O’Dell SJ, Malvaez M, Wu T, Marshall JF (2010) Reversal‑specific learning impairments after a binge regimen of methamphetamine in rats: possible involvement of striatal dopamine. Neuropsychopharmacology 35: 505–514.
  • Izquierdo A, Brigman JL, Radke AK, Rudebeck PH, Holmes A (2017) The neural basis of reversal learning: an updated perspective. Neuroscience 345: 12–26.
  • Jocham G, Klein TA, Neumann J, von Cramon DY, Reuter M, Ullsperger M (2009) Dopamine DRD2 polymorphism alters reversal learning and associated neural activity. J Neurosci 29(12): 3695–3704.
  • Jones SR, Gainetdinov RR, Jaber  M, Giros B, Wightman RM, Caron MG (1998) Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc Natl Acad Sci U S A 95: 4029–4034.
  • Kasahara Y, Arime Y, Hall FS, Uhl GR, Sora I (2015) Region‑specific dendritic spine loss of pyramidal neurons in dopamine transporter knockout mice. Curr Mol Med 15: 237–244.
  • Kehagia AA, Murray GK, Robbins TW (2010) Learning and cognitive flexibility: frontostriatal function and monoaminergic modulation. Curr Opin Neurobiol 20: 199–204.
  • Kolb B (1977) Studies on the caudate–putamen and the dorsomedial thalamic nucleus of the rat: implications for mammalian frontal‑lobe functions. Physiol Behav 18: 237–244.
  • Krause J (2008) SPECT and PET of the dopamine transporter in attention‑deficit/hyperactivity disorder. Expert Rev Neurother 8: 611–625.
  • Lee B, Groman S, London ED, Jentsch JD (2007) Dopamine D2/D3 receptors play a specific role in the reversal of a learned visual discrimination in monkeys. Neuropsychopharmacology 32: 2125–2134.
  • Li F, Wang LP, Shen X, Tsien JZ (2010) Balanced dopamine is critical for pattern completion during associative memory recall. PLoS One 5: e15401.
  • Lohr KM, Masoud ST, Salahpour A, Miller GW (2017) Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease. Eur J Neurosci 45(1): 20‑33.
  • Mazei‑Robinson MS, Blakely RD (2006) ADHD and the dopamine transporter: are there reasons to pay attention? Handb Exp Pharmacol 175: 373–415.
  • McAlonan K, Brown VJ (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res. 146(1‑2): 97–103.
  • McDonald RJ, King AL, Hong NS (2008) Neurotoxic damage to the dorsomedial striatum exaggerates the behavioral influence of a  context‑specific inhibitory association mediated by the ventral hippocampus. Behav Neurosci 122(1): 27–35.
  • Morice E, Billar JM, Deni C, Mathieu F, Betancur C, Epelbaum J, Giros  B, Nosten‑Bertrand  M (2007) Parallel loss of hippocampal LTD and cognitive flexibility in a  genetic model of hyperdopaminergia. Neuropsychopharmacology 32: 2108–2116.
  • Nagahara AH, Bernot T, Tuszynski MH (2010) Age‑related cognitive deficits in rhesus monkeys mirror human deficits on an automated test battery. Neurobiol Aging 31(6): 1020–1031.
  • Owen AM, Roberts AC, Hodges JR, Summers BA, Polkey CE, Robbins TW (1993) Contrasting mechanisms of impaired attentional set‑shifting in patients with frontal lobe damage or Parkinson’s disease. Brain 116(Pt 5): 1159–1175.
  • Pennartz CM, Berke JD, Graybiel AM, Ito R, Lansink CS, van der Meer M, Redish AD, Smith KS, Voorn P (2009) Corticostriatal interactions during learning, memory processing, and decision making. J  Neurosci 29: 12831–12838.
  • Ragozzino ME (2002) The effects of dopamine D(1) receptor blockade in the prelimbic‑infralimbic areas on behavioral flexibility. Learn Mem 9(1): 18–28.
  • Ragozzino ME (2007) The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Ann N Y Acad Sci 1121: 355–375.
  • Ragozzino ME, Detrick S, Kesner RP (1999) Involvement of the prelimbic‑infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning. J Neurosci 19: 4585–4594.
  • Ragozzino ME, Jih J, Tzavos A (2002a) Involvement of the dorsomedial striatum in behavioral flexibility: role of muscarinic cholinergic receptors. Brain Res 953: 205–214.
  • Ragozzino ME, Ragozzino KE, Mizumori SJ, Kesner RP (2002b) Role of the dorsomedial striatum in behavioral flexibility for response and visual cue discrimination learning. Behav Neurosci 116: 105–115.
  • Ranganath A, Jacob SN (2015) Doping the mind: dopaminergic modulation of prefrontal cortical cognition. Neuroscientist 22(6): 593–603.
  • Ratajczak P, Krzysztof Kus K, Patrycja Murawiecka P, Iwona Słodzińska I, Wojciech Giermaziak  W, Nowakowska E (2015) Biochemical and cognitive impairments observed in animal models of schizophrenia induced by prenatal stress paradigm or methylazoxymethanol acetate administration. Acta Neurobiol Exp (Wars) 75(3): 314–325.
  • Reynolds JNJ, Wickens JR (2002) Dopamine‑dependent plasticity of corticostriatal synapses. Neural Networks 15: 507–521.
  • Ritz MC, Kuhar MJ (1989) Relationship between self‑administration of amphetamine and monoamine receptors in brain: comparison with cocaine. J Pharmacol Exp Ther 248(3): 1010‑1017.
  • Robbins TW, Roberts AC (2007) Differential regulation of fronto‑executive function by the monoamines and acetylcholine. Cereb Cortex Suppl 1: i151–i160.
  • Rock PL, Roiser JP, Riedel WJ, Blackwell S (2014) Cognitive impairment in depression: a systematic review and meta‑analysis. Psychol Med 44(10): 2029–2040.
  • Rodriguiz RM, Chu R, Caro, MG, Wetsel WC (2004) Aberrant responses in social interaction of dopamine transporter knockout mice. Behav Brain Res 148: 185–198.
  • Schoenbaum G, Nugent SL, Saddoris MP, Setlow B (2002) Orbitofrontal lesions in rats impair reversal but not acquisition of go, no‑go odor discriminations. Neuroreport 13(6): 885–890.
  • Shen HW, Hagino Y, Kobayashi H, Shinohara‑Tanaka K, Ikeda K, Yamamoto H, Yamamoto T, Lesch KP, Murphy DL, Hall FS, Uhl GR, Sora I (2004) Regional differences in extracellular dopamine and serotonin assessed by in vivo microdialysis in mice lacking dopamine and/or serotonin transporters. Neuropsychopharmacology 29: 1790–1799.
  • Sora I, Wichems C, Takahashi N, Li XF, Zeng Z, Revay R, Lesch KP, Murphy DL, Uhl GR (1998) Cocaine reward models: conditioned place preference can be established in dopamine‑ and in serotonin‑transporter knockout mice. Proc Natl Acad Sci U S A 95: 7699–7704.
  • Stefani MR, Moghaddam B (2006) Rule learning and reward contingency are associated with dissociable patterns of dopamine activation in the rat prefrontal cortex, nucleus accumbens, and dorsal striatum. J Neurosci 26(34): 8810–8818.
  • Tait DS, Phillips JM, Blackwell AD, Brown VJ (2017) Effects of lesions of the subthalamic nucleus/zona incerta area and dorsomedial striatum on attentional set‑shifting in the rat. Neuroscience. 345: 287–296.
  • van der Zee P, Koger HS, Gootjes J, Hespe W (1980) Aryl 1,4‑dialk(en)‑ ‑ylpiperazines as selective and very potent inhibitors of dopamine uptake. Eur J Med Chem 15: 363.
  • van Gaalen MM, van Koten R, Schoffelmeer AN, Vanderschuren LJ (2006) Critical involvement of dopaminergic neurotransmission in impulsive decision making. Biol Psychiatry 60(1): 66–73.
  • Volkow ND, Wang GJ, Fowler JS, Gatley SJ, Logan J, Ding YS, Hitzemann R, Pappas N (1998) Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate. Am J Psychiatry 155(10): 1325–1331.
  • Winter S, Dieckmann  M, Schwabe K (2009) Dopamine in the prefrontal cortex regulates rats behavioral flexibility to changing reward value. Behav Brain Res 198(1): 206–213.
  • Xu TX, Sotnikova TD, Liang C, Zhang J, Jung J, Spealman RD, Gainetdinov RR, Yao WD (2009) Hyperdopaminergic tone erodes prefrontal long‑ term potential via a D2 receptor‑operated protein phosphatase gate. J Neurosci 29: 14086–14099.
  • Yates JR, Darna M, Beckmann JS, Dwoskin LP, Bardo MT (2016) Individual differences in impulsive action and dopamine transporter function in rat orbitofrontal cortex. Neuroscience 313: 122–129.
  • Young JW, Powell SB, Geyer MA, Jeste DV, Risbrough VB (2010) The mouse attentional‑set‑shifting task: a method for assaying successful cognitive aging? Cogn Affect Behav Neurosci 10: 243–251.
  • Zhuang X, Oosting RS, Jones SR, Gainetdinov RR, Miller GW, Caron MG, Hen R (2001) Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc Natl Acad Sci U S A 98: 1982–1987.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c26f4a57-f33c-40f1-8d3a-a31a96e752f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.