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APPLICATION OF ADHESIVE JOINTS
IN REINFORCEMENT AND RECONSTRUCTION
OF WEAKENED WOODEN ELEMENTS LOADED AXIALLY

The paper concerns the  formulation  and analysis  of  an adhesive  joint  model,
aimed at reinforcing or reconstructing weakened wooden elements. The joint is
modeled as a plane stress problem of the theory of elasticity. It is assumed that
wood is an orthotropic material. The reinforcement of an element is achieved by
means  of  attaching  a  covering  plate,  while  reconstruction  is  carried  out  by
introducting an insert into the weakened (deteriorated) zone of an element. The
influence of varying thickness of  plates and inserts  on the stress  states in  the
adherends and adhesive is analyzed. The analyses are related to axially loaded
elements.

Keywords: wood, orthotropy, adhesive joint, element reinforcement, reconstruc-
tion of weakened element, stress concentrations

Introduction

An adhesive joint is made of two adherends in a state of plane stress connected
at common surfaces by an adhesive. It is assumed that the adherends and the
adhesive have constant or moderately changing thickness.

The adhesive joint is modeled as a two-dimensional plane element parallel to
the  0XY plane  in  a  Cartesian  set  of  co-ordinates  0XYZ.  Projections  of  the
adherends and adhesive onto the 0XY plane form identical figures of an arbitrary
shape.

It is assumed that the bending effects in adherends are small and negligible.
Thus, it is further assumed that stresses are constant across adherend thickness
and form plane stress states parallel to the 0XY plane. The layout of an adhesive
joint is presented in figure 1.

The thickness of the adherends is represented by functions g1 = g1(x, y) and
g2 = g2(x, y). The mid-plane of the adhesive is given by the function s = s(x, y).
Adhesive thickness t = t(x, y) is always larger than zero. 
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Fig. 1. Layout of adhesive joint. 1  adherend 1, 2  adherend 2, 3  adhesive

The adherends are made from orthotropic materials and the principal axes of
orthotropy coincide with the X and Y axes. An orthotropic material in a plane
stress state is described using the moduli of longitudinal deformation Ekx ,  Eky ,
the shear modulus Gkxy and Poisson’s ratios νkxy , νkyx. The adhesive is modeled as
a  linearly  elastic  isotropic  medium  described  using  the  following  material
constants: Young’s modulus Es , shear modulus Gs and Poisson’s ratio νs , where
Es = 2(1 +  νs)Gs. The adhesive is subjected to shear stresses  x =  x(x, y),  y =
y(x, y) tangential to the adhesive mid-plane and stress N = N(x, y) normal with
respect to it. It is assumed that the stresses in the adhesive are constant across its
thickness. 

If an adherend thickness at its edge is more than zero, then we describe the
edge as  unsharp.  Stresses  acting at  the  unsharp edges  of  an adherend  k are
denoted as pkx and pky (k = 1, 2). It is assumed that stresses pkx and pky are parallel
to the X and Y axes, respectively, and that they are constant across the thickness.
They are understood as external loading to the adherend edges. The thickness of
an adherend along the entire edge or its fragment can be zero.  In this case, the
edge is called sharp.

Fig. 2.  Cross-section at two types of sharp edges  K: a – obtuse sharp edge, b –
tangential sharp edge 

If  a  sharp  edge  K is  defined  by the  external  surfaces  of  two  adherends
forming an angle α > 0, then the edge is called an obtuse sharp edge (fig. 2a). If
a sharp edge has the external surfaces of two adherends, which are mutually
tangential (α = 0), then the edge is called a tangential sharp edge (fig. 2b). No
boundary loading is defined at sharp edges.

Displacements of adherends 1 and 2 are given by the functions u1 = u1(x, y)
and u2 = u2(x, y) in the direction of the X axis and by the functions υ1 = υ1(x, y)
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and υ2 = υ2(x, y) in the direction of the Y axis. The displacements u1 , u2 , υ1 , υ2

are  considered  as  unknowns.  Equations  of  the  theory  of  elasticity  in
displacements and boundary conditions for a plane stress state were formulated
in  research  by  Rapp  [2010,  2015].  Having  found  the  functions  of  the
displacements  u1 , u2 ,  υ1  ,  υ2 , the stress and strain states for the adhesive and
adherends may be expressed.

The subject of the paper 

An adhesive joint is considered with an adherend 2 loaded axially by a force
N,  with  an  unloaded adherend 1  attached to  it.  If  adherend 2  of  a  constant
thickness has  adherend 1 attached, then the total thickness of both adherends 1
and 2 is more than that of adherend 2 alone.

Fig.  3.  Variants of  reinforcement of  adherend 2 using covering plates  with: a –
constant thickness, b – obtuse sharp edges, c) tangential sharp edges

Such an adhesive joint can be treated as a reinforcement of adherend 2 using
a covering plate (adherend 1). The considered variants of such reinforcement
using covering plates with various edge shapes are presented in figure 3.

If the material in adherend 2 is locally damaged or there are voids, then these
zones  can  be  replaced  with  a  new adherend  1  in  such  a  way that  the  total
thickness of the adhesive joint is equal to the original thickness of element 2.
Such an adhesive joint can be considered a reconstruction of the cross-section of
element 2 by means of an insert (element 1). Some variants of reconstruction
with inserts with variously shaped edges are presented in figure 4.
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Fig. 4.  Variants of reconstruction of adherend 2 using inserts with: a – constant
thickness, b – obtuse sharp edges, c) with tangential sharp edges

Zones  for  the  anchoring  of  covering  plates  or  inserts  should  be  short.
Stresses in adherends between these zones should be constant  and equal  and
stresses  in  the  adhesive  equal  to  zero.  The  adhesive  in  the  anchoring  zones
should be free of stress concentrations.

Meeting these conditions greatly depends on the edge type and the varying
thickness of inserts and covering plates in the anchoring zones.

In this paper, the influence of the shapes of the covering plates and inserts on
the stress state in the adhesive and adherends is analyzed. In addition, formulae
for the anchoring zone length for inserts and covering plates are derived.

Influence of covering plate and insert shape on stress state in joint

Adherend 2 carries all the loading at the edges determined by  x = ±lx.  In the
range – lx < x < lx both adherends 1 and 2 carry the load. Stresses in the adhesive
at the edges  x = ±lx are relatively high. This section of the adhesive surface is
considered the anchoring zone of the covering plate or insert. It is assumed that
the adhesive joint in the anchoring zone carries a suitably large part of the load. 

A stress state in the adhesive in the anchoring zone depends on adherend
thickness at the edges  x = ±lx. For further analysis it is assumed that covering
plates and inserts may have constant thickness  g1 = const, as in figures 3a and
4a, varying thickness g1(x, y) with obtuse sharp edges given by formulae (1) – as
in figures 3b and 4b, or with tangential sharp edges given by formulae (2) – as in
figures 3c and 4c.
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An adhesive joint made of wooden adherends with two planes measuring
2lx × 2ly = 10.0 cm × 8.0 cm, g1 = 0.2 cm and g2 = 1 cm is analyzed. In a timber
trunk  one  can  distinguish  an  element  approximately  characterized  by  plane
orthotropy – for instance, a plank cut from a trunk in a radial plane (fig. 5b).

In such a plank, in a plane stress state, the principal directions of orthotropy
coincide  with  the  direction  parallel  to  the  wood  grain  X = L and  the  radial
direction perpendicular to the wood grain Y = R. It is assumed that in both the
adherends  the  wood  grain  direction  is  parallel  to  the  X  axis.  The  material
constants for spruce wood were taken from Neuhaus [1994]:

 elasticity modulus in the direction parallel to the wood grain Ex = 1.2·106

N/cm2, 
 elasticity modulus in the direction perpendicular to the wood grain  Ey =

0.8·105 N/cm2, 
 shear modulus Gxy = 0.6·105 N/cm2,
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a b

Fig. 5. Wood anisotropy: a – anatomical directions, b – a plank in a radial plane

 Poisson’s  ratios  νxy = 0.03 and  νyx = 0.45 (notation of  νxy, νyx by Rapp
[2015]).

The following data were assumed for the adhesive: thickness  t = 0.04 cm,
Gs = 0.45·105 N/cm2, Es = 1.215·105 N/cm2. Then νs = 0.35.

It is assumed that the adhesive joints are loaded axially by forces N = 8 N in
a form of a normal stress 1 N/cm2 uniformly distributed along the edges x = ±lx

of adherend 2.
The loading  N yields the stresses  τx,  τy,  and  σN in the adhesive and plane

stress states σkx, σky , and τkxy in the adherends (k = 1, 2). Force N is carried by the
adhesive as a stress nx as a resultant of the shear and normal stresses τx and σN,
respectively, which are parallel to the X axis, and by the adherends as the normal
stresses σ1x , and σ2x. 

A  two-dimensional  boundary  value  problem  for  each  adhesive  joint
presented in figures 3 and 4 was solved using the finite difference method. The
presented results are restricted to the stresses nx, σ1x, and σ2x related to axial force
N. They are given in figures 6-10 (no results for the joint in fig. 4a were given as
they only differ from those in fig. 6 in magnitudes, see fig. 12e).

The extreme adhesive stress  values  nx are found at  the  covering plate or
insert edges in the case of constant thickness (fig. 6a). At the obtuse sharp edges
stress nx decreases by ca 50-60% (figs. 7a and 9a), while the extreme values are
still  located at  the edges.  However,  stress  nx at  the adhesive surface is  more
flattened. Stress nx at the tangential sharp edges is equal to zero (figs. 8a, 10a)
[Rapp 2015].

Covering plates and inserts with tangential sharp edges take the stresses from
adherend 2 in a moderate way and the extreme stress nx is found in the anchoring
zone.  Thus,  the  risk of  adhesive  debonding at  the  edge  is  reduced.  Extreme
values of stress nx are lower than for obtuse sharp edges.

In the case of adherends of constant thickness the stress distributions σ1x and
σ2x take the known shape. Stress σ1x increases from zero at the edge x = ±lx and
quickly reaches an approximately constant level between the anchoring zones
(fig.  6b).  In  loaded  adherend  2  stress  σ2x at  the  edges  x =  ±lx assumes  the
boundary values: 1 N/cm2 (in the case of the covering plate) or 1.25 N/cm2 (in
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the case of the insert), then decreases and quickly levels up to a constant value as
in adherend 1 (fig. 6c).

 

    

 

    

 

          a – stress nx                                   b – stress σ1x                               c – stress σ2x 
Fig. 6. Stresses due to axial force N = 8 N in a joint with a covering plate of constant
thickness  as  in  figure  3a.  nx(±lx, 0) = ±0.38215 N/cm2,  σ1x(0, 0) = 0.83332 N/cm2,
σ2x(±lx, 0) = 1 N/cm2,  σ2x(0, 0) = 0.83334 N/cm2

 

     

 

    

 

         a – stress nx                                  b – stress σ1x                                 c – stress σ2x 
Fig. 7. Stresses due to axial force N = 8 N in a joint with a covering plate with obtuse sharp
edges as in figure 3b. nx(±lx, 0) = ±0.18173 N/cm2, σ1x(±lx, 0) = 0.90865 N/cm2, σ1x(0, 0) =
0.83244 N/cm2,  min σ1x(x, 0) = 0.74923 N/m2,  σ2x(±lx, 0) = 1 N/cm2,  σ2x(0, 0) =
0.83248 N/cm2

 

      

 

     

 

              
          a – stress nx                                b – stress σ1x                                    c – stress σ2x 
Fig.  8.  Stresses  due to axial  force  N = 8 N in a joint with a covering plate with
tangential  sharp edges as  in  figure 3c.  max|nx(x,  0)| = 0.14749 N/cm2, σ1x(±lx, 0) =
1.5943 N/cm2,  σ1x(0, 0) = 0.83339 N/cm2,  min σ1x(x, 0) = 0.71944 N/m2,  σ2x(±lx, 0) =
1 N/cm2, σ2x(0, 0) = 0.83345 N/cm2
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           a – stress nx                                  b – stress σ1x                              c – stress σ2x 
Fig. 9. Stresses due to axial force N = 8 N in a joint with an insert with obtuse sharp
edges insert as in figure 4b. nx(±lx, 0) = ±0.18958 N/cm2, σ1x(±lx, 0) = 0.96667 N/cm2,

σ1x(0, 0) = 0.99971 N/cm2,  min σ1x(x, 0) = 0.88205 N/m2,  σ2x(±lx, 0) = 1 N/cm2,
max σ2x(x, 0) = 1.0246 N/cm2

 

      

 

      

 

               
           a – stress nx                                        b – stress σ1x                              c – stress σ2x         

Fig. 10. Stresses due to axial force N = 8 N in a joint with an insert with tangential
sharp edges as in figure 4c. max|nx(x, 0)| = 0.17134 N/cm2, σ1x(±lx, 0) = 1.5942 N/cm2,

σ1x(0, 0) = 1.0001 N/cm2,  min σ1x(x, 0) = 0.85296 N/m2,  σ2x(±lx,v0) = 1 N/cm2,
max σ2x(x, 0) = 1.0330 N/cm2

Except for small fluctuations at the anchoring zones, stress level  σ1x is flat
and only very slightly exceeds the stress in the adhesive joint in both cases of
obtuse sharp edges – with a covering plate or with an insert. Such a model is a
most convenient way to reinforce or reconstruct a cross-section of adherend 2
(figs. 7b, 9b).

In  the  case  of  tangential  sharp  edges  for  covering  plates  or  inserts,
a convenient distribution of stress nx is accompanied by a large local increase in
stress  σ1x at the edges of adherend 1. In the case of the covering plate, it is ca
100% (fig. 8b), and for the insert – ca 75% (fig. 10b) of the mean stress value.
This is due to the fact that adherend 1 is less thick at the sharp edges.
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Anchoring length for covering plate and insert 

For  a  joint  between  adherends  of  constant  thickness  (figs.  3a  and  4a),  the
anchoring length of a covering plate or an insert can be assessed analytically
using a one-dimensional model, where adherend 2 is under axial tension due to
edge stresses  p

xp2  and l
xp2 , (s > 0), and adherend 1 is not loaded.

The function of the shear stress in adhesive τx is given by a known relation

τ x( x )=−
G sσ

tk 0 E 2x cosh k 0 l x

sinh k 0 x , (3)
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The  distribution  of  function  (3)  is  given  in  figure  11.  There  are  regions
limited by curve τx and the X axis along sections lanch = lx –  lk. An area of each
region is a measure of the force carried by the adhesive joint between covering
plate 1 and adherend 2 on the left and right ends of the joint. The sections lanch

determine the anchoring zones on the adhesive surface and the length lanch is the
anchoring length for a covering plate attached to the loaded element.

The length of an anchoring zone can be determined in various ways,  for
instance as a ratio τx(lx) :  τx(lk) between shear stresses at the ends of the section
lanch or as a ratio between the area bounded by curve τx and the X axis along lanch

and the entire area along the section [0, lx].
According to the criterion defined by the ratio τx(lx) : τx(lk) one gets
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Fig. 11.  Stress distribution  τx in adhesive for a joint with a covering plate loaded
axially as in figure 3a

Introducing the anchoring length lanch = lx – lk , one gets from (5)
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If N1 denotes an axial force in a covering plate at the point x = 0, then in the
one-dimensional model 
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According to the second criterion the anchoring force, denoted by Nanch, is
defined as part of the force N1

Nanch = p N1, (8)

where 0 < p < 1. It means that the anchoring zone carries p   ·100% of force N1.
The anchoring force Nanch as a result of stress τx in the adhesive in the anchoring
zone lanch can be given by the following formulae
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Neglecting  the  terms  xlke 0 and  1  in  (10),  and  klke 0 in  (11)  one  gets
approximate formulae
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In this way two formulae, (6) and (12), defining the anchoring length for
a covering plate in an axially loaded adhesive joint, depending on the definition
of the anchoring zone, have been formulated. If the following condition is met
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then they yield the same value of anchoring length.
For instance, if τx(lx) : τx(lk) = 100, then relation (13) leads to p = 0.99. This

means  that  the  anchoring  zone  carries  99% of  the  entire  load  acting  on  the
adhesive joint. In this case, the anchoring length is
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If the width 2ly of the adhesive joint is large enough to have a plane stress 
strip in its central zone, then in the one-dimensional model with an orthotropic 
material one has to substitute

)1( 1111 yxxyxx EE   and )1( 2222 yxxyxx EE   for E1x and E2x.

Formulae  (6),  (12)  and  (14)  give  good  approximations  of  the  anchoring
length of a covering plate  lanch for  the one-dimensional model loaded axially,



70 Piotr RAPP

Fig.  12.  Stress  profiles  nx in  adhesive  of  joints  with covering plates  and inserts
loaded axially by force  N = 8 N. Graphical comparison of anchoring lengths for
covering plates and inserts

 

 

 

 

 

 

 

a) One-dimensional plane stress
model of a joint with a covering
plate of constant thickness as in
fig. 3a

nx(±lx, 0) = ±0.39260 N/cm2

lanch = 1.95495 cm ≈ 1.955 cm

Two-dimensional models

b) A joint with a covering plate of
constant thickness as in figure 3a

nx(±lx, 0) = ±0.38215 N/cm2

c)  A joint  with  a  covering  plate
with  obtuse  sharp  edges  as  in
figure 3b

nx(±lx, 0) = ±0.18173 N/cm2

d)  A joint  with  a  covering  plate
with  tangential  sharp  edges  as  in
figure 3c

max|nx(x, 0)| = ±0.14749 N/cm2

e) A joint with an insert of constant
thickness as in figure 4a

nx(±lx, 0) = ±0.46752 N/cm2

f) A joint with an insert with obtuse
sharp edges as in figure 4b 

nx(±lx, 0) = ±0.18958 N/cm2

g)  A  joint  with  an  insert  with
tangential sharp edges  as in fig. 4c

max|nx(x, 0)| = ±0.17134 N/cm2
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if the adhesive joint has medium or small deformability. Then the values  k0lx and
k0lk are sufficiently high and the anchoring length is relatively short, which is
important from a practical point of view. The accuracy of these remarks can be
checked in the adhesive joint presented in figure 3a. For the plane stress state,
one gets k0 = 2.35564 1/cm. Then 

1303807782.110  ee xlk  and .00000767.07782.110   ee xlk  

For  p =  0.99,  one  gets  lanch =  1.95495 cm from (11).  The  anchoring  length
calculated for the adhesive joint with an insert, presented in fig. 4a, is  lanch =
1.91545 cm.

The anchoring length lanch from the one-dimensional model represents a good
approximation  of  the  anchoring  lengths  for  covering  plates  and  inserts  in
two-dimensional  models  of  adhesive  joints  loaded  axially.  For  verification
purposes, the distributions of stress  nx in the adhesive for the one-dimensional
model  and  two-dimensional  adhesive  joints  shown  in  figures  3  and  4  are
presented in figure 12 on the same scale.

In figures 12a-e, the adhesive is parallel to the 0XY plane, therefore nx = τx.
In the cases shown in figures 12f and 12g, the adhesive surfaces in the anchoring
zones are curved. Thus, the distributions of stress nx parallel to the X axis (stress
nx is a result  of stresses  τx and  σN) are shown to enable a comparison of the
results.

It can be seen in figures 6-10 that stresses  τx and  σN (as well as  nx) in the
adhesive are almost constant along the Y axis. Thus, the graphs of the function
of  nx along the X axis, presented in fig. 12, are representative. The anchoring
length  lanch ≈ 1.955 cm is  measured to  scale  in  figure  12a as  calculated  from
a plane stress strip in the one-dimensional model, and it is depicted by dashed
lines in the remaining figures 12b-g.

The  length  lanch calculated  from  the  one-dimensional  model  is  a  good
approximation of the anchoring length in two-dimensional models.

Reinforcement and reconstruction zones for an element

For the assumed value p = 0.99 in the anchoring zone, the joint carries 99% of
force  N1,  i.e.  the total  force carried by the joint  along 0 ≤  x ≤  lx.  It  can be
concluded from the equality N1(x) + N2(x) = N that in section 0 ≤ x ≤ lx – lanch the
following inequalities hold:

N1 ≥ N1(x) ≥ 0.99 N1   and    N – N1 ≤ N2(x) ≤ N – 0.99 N1 .

Similarly, in section – lx + lanch ≤ x ≤ 0 the inequalities

0.99 N1 ≤ N1(x) ≤ N1    oraz   N – 0.99 N1 ≥ N2(x) ≥ N – N1
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are correct. Thus, in region – lx + lanch ≤ x ≤ lx – lanch stresses σ1x , σ2x in  adherends
1 and 2 are approximately constant. In this zone of the joint, stress  nx =  τx is
negligible  or  equal  to  zero  (fig.  12),  so  displacements  and  strains  in  both
adherends are approximately:  u1 ≈ u2 and ε1x ≈ ε2x  . Hence, for normal stress in
the adherends the relation σ1x : σ2x ≈ E1x : E2x is true.

If the adherends are made from identical materials, then in zone – lx + lanch ≤
x ≤  lx –  lanch, the  normal  stresses  σ1x and  σ2x in  adherends  1  and  2  are
approximately identical and constant, as illustrated in figs. 6-10. 

The internal zone of adhesive joint – lx + lanch ≤ x ≤ lx – lanch can be considered
a  reinforcing  zone  for  element  2  in  the  case  of  the  covering  plate  or
a reconstruction zone for the cross-section of element 2 in the case of the insert.

Conclusions

In the case of axial loading, extreme values of stress nx in the adhesive occur at
the edges of the covering plates and inserts. In the case of obtuse sharp edges,
stress nx is reduced by ca 50-75%. For tangential sharp edges, adhesive stress nx

is zero. A covering plate or an insert with tangential sharp edges takes stresses
from adherend 2 in a moderate way and extreme stress  nx in the adhesive is
located  in  the  anchoring  zone.  Thus,  the  risk  of  debonding  at  the  edges  is
reduced. The maximum values of stress nx are then lower than the stress in the
case of the obtuse sharp edges.

In the cases of adherends with constant thickness, stress σ1x in the covering
plates or inserts increases from zero at the edges x = ± lx and quickly stabilizes at
an approximately constant level between the anchoring zones. Stress  σ2x at the
edges  x =  ±  lx of  the  loaded adherend 2 assumes  boundary values  and then
decreases to a constant level as in adherend 1.

The level  of  stress  σ1x in  the  cases of  covering plates and inserts  having
obtuse sharp edges is flattened except for insignificant fluctuations and it only
very slightly exceeds the values of the stresses acting on the adhesive joint. Such
a case is most efficient for reinforcing and reconstructing element 2.

In the cases of covering plates or inserts with tangential sharp edges, stress
distribution  nx in  the adhesive is  advantageous.  However,  a local  increase in
stress at the edges of the covering plates and inserts is not. In the case of the
covering plate, it amounts to ca 100%, and in the case of the insert – to ca 60%
of the mean stress. The reason for this increase is the fact that adherend 1 is less
thick at the sharp edges.

The anchoring length for the covering plates and inserts calculated from the
one-dimensional  model  is  a  good  approximation  of  the  anchoring  length  in
two-dimensional models.

An overview of problems related to reinforcing and reconstructing weakened
elements in various technical fields can be found in Ahn and Springer [2000];
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Bahei-El-Din and Dvorak [2001]; Kaye and Heller [2002]; Boss et al. [2003];
Kumar et al. [2006]; and Wang and Gunnion [2008].
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