PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 20 | 2 |

Tytuł artykułu

Yields of grain and straw, their content and ionic proportions of macroelements in maize fertilized with ash from municipal sewage sludge combustion

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In 2011-2013, research was conducted on the fertilizer value of ash from municipal waste combustion used as an alternative source of phosphorus. A field experiment was set up on light soil. The design included 5 fertilization variants of maize, which was cultivated for grain and fertilized with mineral fertilizers and ash (P1, P2, P3): NK, NPK, NK+P1 (P1−21.80 kg P ha-1), NK+P2 (P2−43.60 kg P ha-1), NK+P3 (P3−65.40 kg P ha-1). Nitrogen (80 kg N ha-1) was applied in the form of ammonium sulphate and ammonium nitrate, phosphorus (21.80 kg P ha-1) as enriched superphosphate and potassium (91.30 kg K ha-1) as potassium salt. Ash, which was a substitute for phosphorus fertilizer, was obtained from the Pomorzany Sewage Treatment Plant in Szczecin in 2011-2013. It included 9.61%, and in 2013 – 7.11% of total P dissolvable in strong mineral acids. Maize harvest was done in the phase of full ripeness, afterwards the mass of grain and straw was determined as well as the total content of N, P, K, Ca, Mg and S in both yield components. The years with favourable weather conditions fostered high maize grain yield (average 10.75 Mg d.m. ha-1) and maize straw (average 10.06 Mg d.m. ha-1). Ash from sewage sludge combustion did not cause any significant differences in the crop volume in the particular years of research, in comparison with crop from NK and NPK treatments. The weighted average total content of macroelements in maize grain and straw from particular fertilization treatments did not vary widely, and only the highest dose of ash (P3) increased the average content of phosphorus in maize grain and straw as well as calcium in maize grain when compared to NPK. Regardless of the fertilization variant, and in relation to the feed value, an optimal N:S and ionic ratio was found in maize grain, while the ionic proportions between K:Mg and K:(Ca+Mg) were close to optimal ones. Independently of a fertilization variant, the balance of elements was negative for nitrogen and phosphorus and positive for sulphur.

Wydawca

-

Rocznik

Tom

20

Numer

2

Opis fizyczny

p.319-329,ref.

Twórcy

autor
  • Department of Sanitary Engineering, West Pomeranian University of Technology in Szczecin, al.Piastow 50, 70-311 Szczecin, Poland
autor
  • Department of Soil Science, Grassland and Environmental Chemistry, West Pomeranian University of Technology in Szczecin, Szczecin, Poland

Bibliografia

  • Baran A., Pińczuk G., Zając T., Jasiewicz Cz. 2011. Effect of variety and method of fertilization on the content and accumulation of macroelements in the characteristic development phases of maize (Zea mays). Acta Agroph., 17(2): 255-265. (in Polish)
  • Barczak B., Murawska B., Spychaj-Fabisiak E. 2011. Content of sulphur and nitrogen in maize grain depending on the soil type and the fertilization applied. Fragm. Agron., 28(1): 7-14. (in Polish)
  • Bień J. 2012.Utilisation of sewage sludge in Poland by thermal method. Inż. Ochr. Środ., 15(4): 439-449. (in Polish)
  • Blake-Kalff M., Zhao F.J., Mc Grath S. P. 2003. Sulphur deficiency diagnosis using plant tissue analysis. Fert. Fertil., 5(3): 5-25. (in Polish)
  • Ciereszko I. 2005. Can the uptake of phosphates by plants be improved? Kosmos, 54(4): 391-400. (in Polish)
  • Filipek-Mazur B., Lepiarczyk A., Tabak M. 2013. Effect of nitrogen and sulphur fertilization on yield and chemical composition of maize grain. Part II. Nitrogen and sulphur content. Fragm. Agron., 30(4): 29-35.
  • Fukas-Płonka Ł.2013. The thermal methods for treating sludge - fashion or necessity. http://www.osady.pl/artykuly/termiczne_metody_przerobki_osadow.pdf (dostęp 28.05.2013 r.).(in Polish)
  • Gąsiorowska B., Makarewicz A., Nowosielska A. 2011. The content of selected macroelements in grain of maize cultivars sown on three dates. Fragm. Agron., 28(3): 7-15. (in Polish)
  • Grzebisz W., Potarzycki J., Biber M., Szczepaniak W. 2003. Response of agricultural crops to phosphorus fertilization. J. Elem., 8(3): 83-93. (in Polish)
  • Iżewska A., Wołoszyk Cz. 2013. Content of heavy metals in plants and soil fertilization of ash form sewage sludge combustion. Ecol. Chem. Eng. A, 20(9): 1019-1027. DOI: 10.2428/ecea.2013.20(09)093 (in Polish)
  • Kruczek A., Szulc P. 2005. Effect of phosphorus dose, fertilizer type and method of fertilization on the yield of maize cultivated for grain. Pam. Puł., 140: 148-157. (in Polish)
  • Lepiarczyk A., Filipek-Mazur B., Tabak M., Joniec A. 2013. Effect of nitrogen and sulfur fertilization on yield and chemical composition of maize grain. Part I. Maize grain crop yield and its components. Fragm. Agron., 30(3): 115-122. (in Polish)
  • Li S.F., Niu Y.B., Liu J.S., Lu L., Zhang L.Y., Ran C.Y., Feng M.S., Du B., Deng J.L., Luo X.G. 2012. Energy, amino acid, and phosphorus digestibility of phytase transgenic corn for growing pigs. J. Anim. Sci., 91: 298-308. DOI: 10.2527/jas2012-5211.
  • Murawska B., Spychaj-Fabisiak E., Knapowski T., Głowacki B. 2013. Ionic balance in maize grain depending on the fertilization and soil type. J. Cen. Europ. Agric., 14(4): 1535-1546. (in Polish)
  • Pająk T. 2010. Designs of municipal waste and sewage sludge combustion treatment plants in a waste management strategy. Inż. Ochr. Środ., 13(1): 53-66. (in Polish)
  • Potarzycki J. 2008. The effect of partially acidulated phosphate rock on maize grain yield under monoculture growth. Acta Sci. Pol. Agric., 7(4): 71-79. (in Polish)
  • Potarzycki J. 2009. Influence of formulation of phosphorus fertilizer on nitrogen uptake and its efficiency under maize grain cropping. Acta Sci. Pol. Agric., 8(3): 3-13. (in Polish)
  • Regulation of the Minister of the Environment of 13 July 2010 on Municipal Sewage Sludge. Journal of Laws No. 137, item. 924. (in Polish)
  • Rodriguez H., Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech Adv., 17: 319-339.
  • Saeid A., Labuda M., Chojnacka K., Górecki H. 2012. Biotechnological processes in production of phosphorus fertilizers. Przem. Chem., 91(5): 952-955. (in Polish)
  • Statistical Yearbook of the Republic of Polish. 2013. Central Statistical Office, Warszawa 2014. (in Polish)
  • Sundara B., Natarajan V., Hari K. 2002. Influence of phosphorus solubilizing bacteria on the change in soil available phosphorus and sugarcane and sugar yields. Field Crop Res., 77:43-49.
  • Szczepaniak W., Grzebisz W., Potarzycki J. 2014. An assessment of the effect of potassium fertilizing systems on maize nutritional status in critical stages of growth by plant analysis. J. Elem., 19(2): 533-548. (in Polish) DOI: 10.5601/jelem.2014.19.1.576
  • National Waste Management Plan 2014. The Polish Monitor 2010 No 101, item. 1183. (in Polish)
  • Wzorek Z. 2008. The phosphorus compounds recovery from thermally treated waste and its use as a substitute of natural phosphorus raw materials.Wydaw. Polit. Krak., Ser. Inż. i Techn. Chem., Monografie 356, ss. 159. (in Polish)

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c15331e9-a8ec-418b-bac9-f403ae3fbd2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.