PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 17 | 2 |

Tytuł artykułu

Phenomenon of floral reversion in bolting garlic (Allium sativum L.)

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this study, we present investigations of morphological changes in the inflorescence of bolting Allium sativum L., which forms umbel-like inflorescences with small, inconspicuous flowers, bulbils, and leaf-like membranous bracts. Particular attention was focused on the architecture of a single flower, and the full sequence of developmental events and the differentiation of flower elements and inflorescence were traced. During the several-year long investigations of the garlic species, we observed that all inflorescence elements emerged chaotically, taking a completely random place in the inflorescence receptacle and it was impossible to identify the sequence of formation of the individual inflorescence elements. The absence of regular phyllotaxis and the specific sequence of formation of inflorescence elements are characteristic for inflorescence reversion. Since domesticated garlic has lost the capacity for sexual reproduction, it has probably evolved alternative reproduction modes in its developmental strategy, which is reflected by the formation of numerous bulbils (vegetative buds, topsets) in the inflorescence. This is one of the forms of reproductive strategy of the species, which through domestication progresses from sexual to asexual reproduction.

Wydawca

-

Rocznik

Tom

17

Numer

2

Opis fizyczny

p.123-134,fig.,ref.

Twórcy

  • Department of Plant Anatomy and Cytology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
autor
  • Department of Plant Anatomy and Cytology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
  • Department of Plant Anatomy and Cytology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland

Bibliografia

  • Battey, N.H., Lyndon, R.F. (1984). Changes in apical growth and phyllotaxis on flowering and reversion in Impatiens balsamina L. Ann. Bot., 54(4), 553–567. DOI: https://doi.org/10.1093/oxfordjournals.aob.a086826.
  • Battey, N.H., Lyndon, R.F. (1990). Reversion of flowering. Bot. Rev., 56(2), 162– 189.
  • Benlloch, R., Berbel A., Serrano-Mislata, A., Madueño, F. (2007). Floral initiation and inflorescence architecture: a comparative view. Ann. Bot., 100(3), 659–676.
  • Coen, E., Meyerowitz, E.M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature, 353, 31–37.
  • Deepu, M., Zakwan, A., Singh, N. (2005). Formulation of flowering index, morphological relationships, and yield prediction system in true garlic aerial seed bulbil production. HortScience, 40(7), 2036–2039.
  • Durdan, S.F., Herbert, R.J., Rogers, H.J., Francis, D. (2000). The determination time of the carpel whorl is differentially sensitive to carbohydrate supply in Pharbitis nil. Plant. Physiol., 123(1), 189–200.
  • Eckardt, N.A. (2005). A time to grow, a time to flower. Plant Cell, 17(10), 2615–2617
  • Etoh, T. (1985). Studies on the sterility in garlic, Allium sativum L. Mem. Fac. Agric. Kagoshima Univ., 21, 77– 132.
  • Etoh, T., Simon, P.W. (2002). Diversity, fertility and seed production of garlic. In: Allium crop sciences: recent advances, Rabinowitch, H.D., Currah, L. (eds). CABI International, Wallingford, 101–117.
  • Hanelt, P. (1990). Taxonomy, evolution, and history. In: Onion and allied crops. Vol. I. Botany, physiology and genetics. Rabinowitch, H.D., Brewster, J.L. (eds). CRC Press, Boca Raton, 2–26.
  • Hayat, M.A. (1981). Principles and techniques of electron microscopy. Biological applications. E. Arnold, London. Hempel, F.D., Welch, D.R., Feldman, L.J. (2000). Floral induction and determination: where is flowering controlled? Trends Plant Sci., 5(1), 17–21.
  • Howe, H.F., Smallwood, J. (1982). Ecology of seed dispersal. Ann. Rev. Ecol. Syst., 13(1), 201–228.
  • Irish, V.F. (2010). The flowering of Arabidopsis flower development. Plant J., 61(6), 1014–1028.
  • Kamenetsky, R. (1994). Life cycle, flower initiation and propagation of the desert geophyte Allium rothii. Int. J. Plant. Sci., 155, 597–605.
  • Kamenetsky, R. (1997). Inflorescence of Allium species (subgenus Melanocrommyum): structure and development. Acta. Hortic., 430, 141–146.
  • Kamenetsky, R., Rabinowitch, H.D. (2001). Floral development in bolting garlic. Sex. Plant Reprod., 13(4), 235–241.
  • Kamenetsky, R., Shafir, I.L., Baizerman, M., Khassanov, F., Kik, C., Rabinowitch, H.D. (2004a). Garlic (Allium sativum L.) and its wild relatives from Central Asia: evaluation for fertility potential. Acta Hortic., 637, 83–91.
  • Kamenetsky, R., Shafir, I.L., Zemah, H., Barzilay, A., Rabinowitch, H.D. (2004b). Environmental control of garlic growth and florogenesis. J. Am. Soc. Hortic. Sci., 129, 144–151.
  • Kamenetsky, R. (2007). Garlic: botany and horticulture. Horticultural Reviews. Volume 33. Janick, J. (ed.), John Wiley & Sons, Hoboken. DOI: 10.1002/9780470168011.
  • Koul, A.K., Gohil, R.N. (1970). Causes advertingsexual reproduction in Allium sativum L. Cytology, 35, 197–202.
  • Krontal, Y., Kamenetsky, R., Rabinowitch, H.D. (1998). Lateral development and florogenesis of a tropical shallot-a comparison with bulb onion. Int. J. Plant. Sci., 159, 57–64.
  • Latvala, S., Susi, P., Lemmetty, A., Cox, S., Jones, A.T., Lehto, K. (1997). Ribes host range and erratic distribution within plants of blackcurrant reversion associated virus provide further evidence for its role as the causal agent of reversion disease. Ann. Appl. Biol., 131(2), 283–295.
  • Lehmann, N.L., Sattler, R. (1993). Homeosis in floral development of Sanguinaria canadensis and S. canadensis ‘Multiplex’ (Papaveraceae). Am. J. Bot., 80(11), 1323–1335.
  • Li, P., Johnston, M.O. (1999). Evolution of meiosis timing during floral development. Proc. Royal Soc. Lond., B, 266, 185–190.
  • Mann, L. (1959). The Allium inflorescence: some species of the section Molium. Am. J. Bot., 46, 730–739.
  • Mass, H.L., Klass, M. (1995). Intraspecific differentiation of garlic (Allium sativum L.), by isozyme and RAPD markers. Theor. Appl. Genet., 91, 89–97.
  • Mathew, B. (1996). A review of Allium Section Allium. Royal Botanic Garden Kew, Richmond. Meyerowitz, E.M., Pruitt, R.E. (1985). Arabidopsis thaliana and plant molecular genetics. Science, 229, 1214–1218.
  • Meyerowitz, E.M. (1994). Flower development and evolution: new answers and new questions. PNAS 91, 5735– 5737.
  • Molau, U. (1993). Relationships between flowering phenology and life history strategies in tundra plants. Arct. Alp. Res., 25(4), 391–402.
  • Ohri, D., Fritsch, R.M., Hanelt, P. (1996). Evolution of genome size in Allium (Alliaceae). Pl. Syst. Evol., 210, 57–86.
  • Okamuro, J.K., Den Boer, B.G., Lotys-Prass, C., Szeto, W., Jofuku, K.D. (1996). Flowers into shoots: photo and hormonal control of a meristem identity switch in
  • Arabidopsis. Proc. Nat. Acad. Sci., 93(24), 13831– 13836.
  • Parcy, F. (2004). Flowering: a time for integration. Int. J. Develop. Biol., 49(5-6), 585–593.
  • Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., Yanofsky, M.F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 405, 200–203.
  • Pidkowich, M.S., Klenz, J.E., Haughan, G.W. (1999). The making of the flower: control of floral meristem identity in Arabidopsis. Trends Plant Sci., 4, 64–70.
  • Pooler, M.R., Simon, P.W. (1993). Characterization and classification of isozyme and morphological variation in a diverse collection of garlic clones. Europhytica, 68, 121–130.
  • Pooler, M.R., Simon, P.W. (1994). True seed production in garlic. Sex. Plant Reprod., 7, 361–37.
  • Prusinkiewicz, P., Erasmus, Y., Lane, B., Harder, L.D., Coen, E. (2017). Evolution and development of inflorescence architectures. Science, 316(5830), 1452–1456. DOI: 10.1126/science.1140429.
  • Rotem, N., Shemesh, E., Peretz, Y., Akad, F., Edelbaum, O., Rabinowitch, H.D., Sela, I., Kamenetsky, R. (2007). Reproductive development and phenotypic differences in garlic are associated with expression and splicing of LEAFY homologue gaLFY. J. Exp. Bot., 58, 1133–1141.
  • Rutishauser, R. (1995). Developmental patterns of leaves in Podostemaceae compared with more typical flowering plants: saltational evolution and fuzzy morphology. Can. J. Bot., 73(9), 1305–1317.
  • Rutishauser, R. (1997). Structural and developmental diversity in Podostemaceae (river-weeds). Aquatic Bot., 57(1–4), 29–70.
  • Rutishauser, R., Isler, B. (2001). Developmental genetics and morphological evolution of flowering plants, especially bladderworts (Utricularia): fuzzy Arberian morphology complements classical morphology. Ann. Bot., 88(6), 1173–1202.
  • Salguero‐Gómez, R. (2017). Applications of the fast–slow continuum and reproductive strategy framework of plant life histories. New Phytol., 4, 1618–1624. DOI:10.1111/nph.1428.
  • Sattler, R. (1988). Homeosis in plants. Am. J. Bot. 75, 1606–1617.
  • Sattler, R. (1996). Classical morphology and continuum morphology: opposition and continuum. Ann. Bot., 78(5), 577–581.
  • Sattler, R. Rutishauser, R. (1997). The fundamental relevance of morphology and morphogenesis to plant research. Ann. Bot., 80(5), 571–582.
  • Shemesh Mayer, E., Winiarczyk, K., Błaszczyk, L., Kosmala, A., Rabinowitch, H.D., Kamenetsky, R. (2013). Male gametogenesis and sterility in garlic (Allium sativum L.): barriers on the way to fertilization and seed production. Planta, 237(1), 103–120.
  • Stearns, S.C. (1989). Trade-offs in life-history evolution. Funct. Ecol., 3(3), 259–268.
  • Takagi, H. (1990). Garlic Allium sativum L. In: Onions and allied crops. Vol. 3. Biochemistry, food science, and minor crops. Rabinowitch, H.D., Brewster, J.L. (eds). CRC Press, Boca Raton, 109–146.
  • Tchórzewska, D., Deryło, K., Błaszczyk, L., Winiarczyk, K. (2015). Tubulin cytoskeleton during microsporogenesis in the male-sterile genotype of Allium sativum and fertile Allium ampeloprasum L. Plant Reprod., 28(3), 171–182. DOI 10.1007/s00497-015-0268-0.
  • Tchórzewska, D., Deryło, K., Winiarczyk, K. (2017). Cytological and biophysical comparative analysis of cell structures at the microsporogenesis stage in sterile and fertile Allium species. Planta, 245, 137–150. DOI 10.1007/s00425-016-2597-0.
  • Tooke, F., Ordidge, M., Chiurugwi, T., Battey, N. (2005). Mechanisms and function of flower and inflorescence reversion. J. Exp. Bot., 56(420), 2587–2599.
  • Washburn, C.F., Thomas, J.F. (2000). Reversion of flowering in Glycine max (Fabaceae). Am. J. Bot., 87(10), 1425–1438.
  • Zayed, E.M.M., Zein, E., Dina, A.F.M., Manafb, H.H., Abdelbarb, O.H. (2016). Floral reversion of mature inflorescence of date. Ann. Agric. Sci., 61(1), 125–133.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c1195cbe-12fe-435e-871b-69cf9651fc0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.