PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 61 | 1 |

Tytuł artykułu

Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The ability of Candida sp. cells to adhere to the mucosal surfaces of various host organs as well as synthetic materials is an important pathogenicity feature of those fungi which contributes to the development of infection. This property varies depending on the species of the fungus and is the greatest for C. albicans. The process of adhesion depends on plenty of factors related to the fungal and host cells as well as environmental conditions. The main adhesins present on the fungal cell wall are: Als, Epa, Hwp1, but also Eap1, Sun41, Csh1 and probably Hyr1; for adhesion significant are also secreted aspartyl proteases Sap. Various researchers specify a range of genes which contribute to adhesion, such as: CZF1, EFG1, TUP1, TPK1, TPK2, HGC1, RAS1, RIM101, VPS11, ECM1, CKA2, BCR1, BUD2, RSR1, IRS4, CHS2, SCS7, UBI4, UME6, TEC1 and GAT2. Influence for adherence have also heat shock proteins Hsp70, Mediator Middle domain subunit Med31 and morphological transition. Among factors affecting adhesion related to host cells it is necessary to mention fibronectins and integrins (receptors for Candida sp. adhesins), type of epithelial cells, their morphology and differentiation phase. To a lesser degree influence on adhesion have nonspecific factors and environmental conditions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

61

Numer

1

Opis fizyczny

p.3-9,fig.,ref.

Twórcy

  • Department of Biology and Medical Parasitology, Medical University of Lodz, Hallera sq. 1, 90-647 Lodz, Poland
  • Department of Biology and Medical Parasitology, Medical University of Lodz, Hallera sq. 1, 90-647 Lodz, Poland

Bibliografia

  • [1] Fisher J.F., Kavanagh K., Sobel J.D., Kauffman C.A., Newman C.A. 2011. Candida urinary tract infection: pathogenesis. Clinical Infectious Diseases 52: S437- S451.
  • [2] Henriques M., Azeredo J., Oliveira R. 2006. Candida species adhesion to oral epithelium: factors involved and experimental methodology used. Critical Reviews in Microbiology 32: 217-226.
  • [3] Jayatilake J.A.M.S. 2011. A review of the ultrastructural features of superficial candidiasis. Mycopathologia 171: 235-250.
  • [4] Machado A.G., Komiyama E.Y., Santos S.S.F., Jorge A.O.C., Brighenti F.L., Koga-Ito C.Y. 2011. In vitro adherence of Candida albicans isolated from patients with chronic periodontitis. Journal of Applied Oral Science 19: 384-387.
  • [5] Trofa D., Gácser A., Nosanchuk J.D. 2008. Candida parapsilosis, an emerging fungal pathogen. Clinical Microbiology Reviews 21: 606-625.
  • [6] Wang Y.C., Huang S.H., Lan C.Y., Chen B.S. 2012. Prediction of phenotype-associated genes via a cellular network approach: a Candida albicans infection case study. PLoS One 7: e35339.
  • [7] Lima-Neto R.G., Beltrão E.I.C., Oliveira P.C., Neves R.P. 2011. Adherence of Candida albicans and Candida parapsilosis to epithelial cells correlates with fungal cell surface carbohydrates. Mycoses 54: 23-29.
  • [8] Fidel P.L.Jr., Vazquez J.A., Sobel J.D. 1999. Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clinical Microbiology Reviews 12: 80-96.
  • [9] Negri M., Martins M., Henriques M., Svidzinski T.I.E., Azeredo J., Oliveira R. 2010. Examination of potential virulence factors of Candida tropicalis clinical isolates from hospitalized patiens. Mycopathologia 169: 175-182.
  • [10] ten Cate J.M., Klis F.M., Pereira-Cenci T., Crielaard W., de Groot P.W.J. 2009. Molecular and cellular mechanisms that lead to Candida biofilm formation. Journal of Dental Research 88: 105-115.
  • [11] Martin R., Wächtler B., Schaller M., Wilson D., Hube B. 2011. Host-pathogen interactions and virulenceassociated genes during Candida albicans oral infections. International Journal of Medical Micro - biology 301: 417-422.
  • [12] Sundstrom P. 1999. Adhesins in Candida albicans. Current Opinion in Microbiology 2: 353-357.
  • [13] Wächtler B., Wilson D., Haedicke K., Dalle F., Hube B. 2011. From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One 6: e17046.
  • [14] Bader O., Schaller M., Klein S., Kukula J., Haack K., Mühlschlegel F., Korting H.C., Schäfer W., Hube B. 2001. The KEX2 gene of Candida glabrata is required for cell surface integrity. Molecular Microbiology 41: 1431-1444.
  • [15] Naglik J.R., Albrecht A., Bader O., Hube B. 2004. Candida albicans proteinases and host/patogen interactions. Cellular Microbiology 6: 915-926.
  • [16] Nobile C.J., Nett J.E., Andes D.R., Mitchell A.P. 2006. Function of Candida albicans adhesion Hwp1 in biofilm formation. Eukaryotic Cell 5: 1604-1610.
  • [17] Naglik J.R., Fostira F., Ruprai J., Staab J.F., Challacombe S.J., Sundstrom P. 2006. Candida albicans HWP1 gene expression and host antibody responses in colonization and disease. Journal of Medical Microbiology 55: 1323-1327.
  • [18] Williams D.W., Kuriyama T., Silva S., Malic S., Lewis M.A.O. 2011. Candida biofilms and oral candidosis: treatment and prevention. Periodontology 2000 55: 250-265.
  • [19] Murciano C., Moyes D.L., Runglall M., Tobouti P., Islam A., Hoyer L.L., Naglik J.R. 2012. Evaluation of the role of Candida albicans agglutinin-like sequence (Als) proteins in human oral epithelial cell interactions. PLoS One 7: e33362.
  • [20] Sheppard D.C., Yeaman M.R., Welch W.H., Phan Q.T., Fu Y., Ibrahim A.S., Filler S.G., Zhang M., Waring A.J., Edwards J.E.Jr. 2004. Functional and structural diversity in the Als protein family of Candida albicans. Journal of Biological Chemistry 279: 30480-30489.
  • [21] Zhao X., Oh S.H., Hoyer L.L. 2007. Deletion of ALS5, ALS6 or ALS7 increases adhesion of Candida albicans to human vascular endothelial and buccal epithelial cells. Medical Mycology 45: 429-434.
  • [22] Liu Y., Filler S.G. 2011. Candida albicans Als3, a multifunctional adhesion and invasion. Eukaryotic Cell 10: 168-173.
  • [23] Nobile C.J., Mitchell A.P. 2005. Regulation of cellsurface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Current Biology 15: 1150-1155.
  • [24] Zhao X., Oh S.H., Cheng G., Green C.B., Nuessen J.A., Yeater K., Leng R.P., Brown A.J.P., Hoyer L.L. 2004. ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesion; functional comparisons between Als3p and Als1p. Microbiology 150: 2415-2428.
  • [25] Zhao X., Oh S.H., Yeater K.M., Hoyer L.L. 2005. Analysis of the Candida albicans Als2p and Als4p adhesions suggests the potential for compensatory function within the Als family. Microbiology 151: 1619-1630.
  • [26] Zhao X., Oh S.H., Hoyer L.L. 2007. Unequal contribution of ALS9 alleles to adhesion between Candida albicans and human vascular endothelial cells. Microbiology 153: 2342-2350.
  • [27] Alves C.T.,Wei X.Q., Silva S., Azeredo J., Henriques M., Williams D.W. 2014. Can dida albicans promotes invasion and colonisation of Candida glabrata in a reconstituted human vaginal epithelium. Journal of Infection 69: 396-407.
  • [28] Filler S.G. 2006 Candida-host cell receptor-ligand inter actions. Current Opinion in Microbiology 9: 333- 339.
  • [29] Sundstrom P. 2002. Adhesion in Candida spp. Cellular Microbiology 4: 461-469.
  • [30] Karkowska-Kuleta J., Rapala-Kozik M., Kozik A. 2009. Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Acta Biochimica Polonica 56: 211-224.
  • [31] Blankenship J.R., Mitchell A.P. 2006. How to build a biofilm: a fungal perspective. Current Opinion in Microbiology 9: 588-594.
  • [32] Sun J.N., Solis N.V., Phan Q.T., Bajwa J.S., Kashleva H., Thompson A., Liu Y., Dongari- Bagtzoglou A., Edgerton M., Filler S.G. 2010. Host cell invasion and virulence mediated by Candida albicans Ssa1. PLoS Pathogens 6: e1001181.
  • [33] Uwamahoro N., Qu Y., Jelicic B., Lo T.L., Beaurepaire C., Bantun F., Quenault T., Boag P.R., Ramm G., Callaghan J., Beilharz T.H., Nantel A., Peleg A.Y., Traven A. 2012. The functions of Mediator in Candida albicans support a role in shaping species-specific gene expression. PLoS Genetics 8: e10002613.
  • [34] Badrane H., Cheng S., Nguyen M.H., Jia H.Y. Zhang Z., Weisner N., Clancy C.J. 2005. Candida albicans IRS4 contributes to hyphal formation and virulence after the initial stages of disseminated candidiasis. Microbiology 151: 2923-2931.
  • [35] Cheon S.A., Bal J., Song Y., Hwang H.M., Kim A.R., Kang W.K., Kang H.A., Hannibal-Bach H.K., Knudsen J., Ejsing C.S., Kim J.Y. 2012. Distinct roles of two ceramide synthases, CaLag1p and CaLac1p, in the morphogenesis of Candida albicans. Molecular Microbiology 83: 728-745.
  • [36] Du H., Guan G., Xie J., Sun Y., Tong Y., Zhang L., Huang G. 2012. Roles of Candida albicans Gat2, a GATA-type zinc finger transcription factor, in biofilm formation, filamentous growth and virulence. PLoS One 7(1): e29707.
  • [37] Dalle F., Wächtler B., L’Ollivier C., Holland G., Bennert N., Wilson D., Labruère C., Bonnin A., Hube B. 2010. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cellular Microbiology 12: 248-271.
  • [38] Falgier C., Kegley S., Podgorski H., Heisel T., Storey K., Bendel C.M., Gale C.A. 2011. Candida species differ in their interactions with immature human gastrointestinal epithelial cells. Pediatric Research 69: 384-389.
  • [39] Gropp K., Schild L., Schindler S., Hube B., Zipfel P.F., Skerka C. 2009. The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Molecular Immunology 47: 465- 475.
  • [40] Mayer F.L., Wilson D., Jacobsen I.D., Miramón P., Große K., Hube B. 2012. The novel Candida albicans transporter Dur31 is a multi-stage pathogenicity factor. PLoS Pathogens 8: e1002592.
  • [41] Tsai P.-W, Yang C.-Y., Chang H.-T., Lan C.-Y. 2011. Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cellwall carbohydrates. PLoS One 6: e17755.
  • [42] Emira N., Mejdi S., Dorra K., Amina B., Eulogio V. 2011. Comparison of the adhesion ability of Candida albicans strains to biotic and abiotic surfaces. African Journal of Biotechnology 10: 977-985.
  • [43] Salerno C., Pascale M., Contaldo M., Esposito V., Busciolano M., Milillo L., Guida A., Petruzzi M., Serpico R. 2011. Candida-associated denture stomatitis. Medicina Oral Patologia Oral y Cirugia Bucal 16: e139-e143.
  • [44] San Millán R., Elguezabal N., Regúlez P., Moragues M.D., Quindós G., Pontón J. 2000. Effect of salivary secretory IgA on the adhesion of Candida albicans to polystyrene. Microbiology 146: 2105-2112.
  • [45] Wächtler B., Citiulo F., Jablonowski N., Förster S., Dalle F., Schaller M., Wilson D., Hube B. 2012. Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PLoS One 7: e36952.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-bdee1062-f85e-43d3-aeb0-2a85741f76ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.