PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2018 | 162 | 09 |

Tytuł artykułu

Wyniki wstępnych badań nad zmiennością genetyczną oraz zróżnicowaniem genetycznym między populacjami wiązu górskiego (Ulmus glabra Huds.) w Polsce

Treść / Zawartość

Warianty tytułu

EN
Results of preliminary research on genetic variation and genetic differentiation between Wych elm populations (Ulmus glabra Huds.) in Poland

Języki publikacji

PL

Abstrakty

EN
Wych elm (Ulmus glabra Huds.) is a rare scattered forest tree species in Poland. First studies on genetic diversity of the species in its natural range in Poland give a good basis for the management and conservation of its genetic resources. In the present study, we determined the level of genetic variation and genetic differentiation of seventeen natural Wych elm populations in Poland using nine nuclear microsatellite loci. The number of analyzed individuals was 601. The level of genetic diversity of Polish populations of Wych elm corresponded with the results of the previous studies on this species in Europe. The populations show quite low level of genetic diversity of the species on the population level and quite high diversity on the interpopulation level. A total of 119 alleles was found, with average number per locus (A) equal 6.0 and allelic richness at medium high level (AR10=4.7). Observed (Ho) and expected (He) heterozygosity reached 0.583 and 0.602 respectively. The genetic differentiation between Polish populations of Wych elm occurred at a low level (Fst=0.089). Inbreeding depression may occur in the next generations (Fis=0.031). Genetic diversity between Wych elm populations in Poland may be the result of unfavorable random processes related to the reduction of population size resulting from elm disease. To better understand the processes related to the genetic diversity of Wych elm populations, research on field elm variation should be undertaken. Such studies may give an answer to the potential influence of introgression between these species on the genetic structure of the Wych elm. Both in situ as well as ex situ conservation measures are highly recommended to preserve genetic resources of this valuable noble hardwood species in Polish landscape.

Wydawca

-

Czasopismo

Rocznik

Tom

162

Numer

09

Opis fizyczny

s.727-736,rys.,tab.,bibliogr.

Twórcy

  • Leśny Bank Genów Kostrzyca, Miłków 300, 58-535 Miłków
autor
  • Leśny Bank Genów Kostrzyca, Miłków 300, 58-535 Miłków
autor
  • Leśny Bank Genów Kostrzyca, Miłków 300, 58-535 Miłków
autor
  • Instytut Dendrologii, Polska Akademia Nauk, ul.Parkowa 5, 62-036 Kórnik
  • Instytut Dendrologii, Polska Akademia Nauk, ul.Parkowa 5, 62-036 Kórnik
autor
  • Leśny Bank Genów Kostrzyca, Miłków 300, 58-535 Miłków

Bibliografia

  • Boratyńska K., Sękiewicz M., Boratyński A. 2015. Morfologia, systematyka i rozmieszczenie geograficzne. W: Bugała W., Boratyński A., Iszkuło G. [red.]. Wiązy. Bogucki Wydawnictwo Naukowe, Poznań. 24-52.
  • Burczyk J., Chybicki I. J., Trojankiewicz M. 2018. High genetic diversity promotes a common-garden trial of Quercus robur as a potential seed source. Dendrobiology 79: 1-9.
  • Chapuis M. P., Estoup A. 2007. Microsatellite Null Alleles and Estimation of Population differentiation. Molecular Biology and Evolution 24 (3): 621-631.
  • Chmielarz P. 2007. Kriogeniczne przechowywanie nasion leśnych drzew liściastych z kategorii orthodox i suborthodox (intermediate). Bogucki Wydawnictwo Naukowe, Poznań.
  • Collada C., Fuentes-Utrilla P., Gil L., Cervera M. T. 2004. Characterization of microsatellite loci in Ulmus minor Miller and cross-amplification in U. glabra Hudson and U. laevis Pall. Molecular Ecology Resources 4 (4): 731--732.
  • Collin E., Bilger I., Eriksson G., Turok J. 2000. The conservation of elm genetic resources in Europe. W: Dunn Ch. P. [red.]. The Elms. Breeding, Conservation, and Disease Management. Springer, Boston, MA. 281-293.
  • Do C., Waples R. S., Peel D., Macbeth G. M., Tillett B. J., Ovenden J. R. 2014. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources 14 (1): 209-214.
  • Eriksson G. 2001. Conservation of noble hardwoods in Europe. Canadian Journal of Forest Research 31 (4): 577-587.
  • Jump A. S., Woodward F. I., Burke T. 2003. Cirsium species show disparity in patterns of genetic variation at their range-edge, despite similar patterns of reproduction and isolation. New Phytologist 160 (2): 359-370.
  • Goudet J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices, Version 2.9.3.
  • Leroy G., Carroll E. L., Bruford M. W., Dewoody J. A., Strand A., Waits L., Wang J. 2017. Next-generation metrics for monitoring genetic erosion within populations of conservation concern. Evolutionary Applications.
  • Lewandowski A., Kowalczyk J., Litkowiec M., Urbaniak L., Rzońca M. 2017. Wybór elitarnych drzew matecz-nych sosny zwyczajnej i modrzewia europejskiego do założenia plantacji nasiennych 1,5 generacji. Sylwan 161 (11): 917-926.
  • Lewandowski A., Litkowiec M. 2017. Genetic structure of the old black poplar population along the bank of the Vistula River in Poland. Acta Societatis Botanicorum Poloniae 86 (1): 3524.
  • Litkowiec M., Lewandowski A., Wachowiak W. 2018. Genetic variation in Taxus baccata L.: A case study supporting Poland’s protection and restoration program. Forest Ecology Management 409: 148-160.
  • Martin del Puerto M., Garcia F. M., Mohanty A., Martin J. P. 2017. Genetic diversity in relict and fragmented population of Ulmus glabra Hudson in the Central System of the Iberian Peninsula. Forests 8 (5): 143.
  • Meagher T. R. 2007. Paternity analysis in a fragmented landscape. Heredity 99: 563-564.
  • Napierała-Filipiak A., Filipiak M., Jaworek J. 2014. Rozmieszczenie zasobów drzew z rodzaju wiąz (Ulmus spp.) w lasach Polski w świetle dokumentacji leśnej. Sylwan 158 (11): 811-820.
  • Nielsen L. R., Kjćr E. D. 2010. Gene flow and mating patterns in individuals of wych elm (Ulmus glabra) in forest and open land after the influence of Dutch elm disease. Conservation Genetics 11 (1): 257-268.
  • Peakall R., Smouse P. E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Resources 6 (1): 288-295.
  • Ralska-Jasiewiczowa M., Nalepka D., Goslar T. 2003. Some problems of forest transformation at the transition to the oligocratic Homo sapiens phase of the Holocene interglacial in northern lowlands of central Europe. Vegetation History and Archaeobotany 12 (4): 233-247.
  • Rousset F. 2008. Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources 8 (1): 103-106.
  • Sork V. L., Smouse P. E. 2006. Genetic analysis of landscape connectivity in tree populations. Landscape Ecology 21 (6): 821-836.
  • Weir B. S., Cockerham C. 1996. Genetic data analysis II: Methods for discrete population genetic data. Sinauer Associates Inc., Sunderland, MA, USA.
  • Whiteley R. E., Black-Samuelsson S., Clapham D. 2003. Development of microsatellite markers for the European white elm (Ulmus laevis Pall.) and cross-species amplification within the genus Ulmus. Molecular Ecology Resources 3 (4): 598-600.
  • Zając M., Zając A. [red.]. 2001. Atlas rozmieszczenia roślin naczyniowych w Polsce. Pracownia Chorologii Kompu-terowej Instytutu Botaniki Uniwersytetu Jagiellońskiego w Krakowie.
  • Zalapa J. E., Brunet J., Guries R. P. 2008. Isolation and characterization of microsatellite markers for red elm (Ulmus rubra Muhl) and across-species amplification with Siberian elm (Ulmus pumila L.). Molecular Ecology Resources 8 (1): 109-112.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-bd7bff01-d0b1-489c-aa57-4eadf7c85317
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.