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Summary: This paper presents the results of analyses investigat-
ing the effect of moisture content (10 to 22%) and the addition of 
the binder such as molasses (5%) and calcium lignosulphonate 
(2%) on the compaction parameters of sugar beet pulp. The 
experiments were performed with the use of the ZWICK Z020/
TN2S universal strength tester and a closed compression die 
assembly. An increase in moisture content led to an increase in 
material density in the compression chamber and agglomerate 
density (by 28% on average). The lowest energy outcomes were 
noted during compaction of sugar beet pulp without content of 
binder (average 17,71 J∙g-1), and the highest ones during compac-
tion of sugar beet pulp with addition of the molasses– at about 
23,53 J∙g-1. The agglomerated sugar beet pulp with addition of the 
calcium lignosulphonate, at the moisture of 19%, was shown to 
have the highest value of mechanical strength of about 2.2 MPa. 
Key words: compaction, sugar beet pulp, moisture content, bind-
er, calcium lignosulphonate, LignoBond DD, molasses.

INTRODUCTION

The main direction of utilization of sugar-beet pulp is 
to use it in the feeding of farm animals [2, 5]. In this case 
the sugar pulp is to be preserved by acidification or drying. 
Subsequently, the dried pulp can be subjected to briquetting 
or pelleting. This form is the most convenient for transport 
and feeding [3, 10].

However, due to the observed decrease in livestock pop-
ulations and rapidly growing market of biomass [1, 13, 18, 
19], an alternative direction to use the compacted pulp may 
be its assignment for energy purposes. During the manufac-
ture of pulp pellets, molasses may be added in an amount 
from 5 to 15%. As a result, on the one hand the energy value 
of the product increases, on the other hand the addition of 
molasses favors the formation of agglomerates with high 
mechanical strength. Molasses is used mainly by sugar mills 
producing feed pellets. However, for energy purposes, due 
to possible technical difficulties, molasses can be replaced 

by the addition of lignin binders [14, 17, 20], what results in 
improved viscosity of processed material. as well as reduced 
sensitivity of formed agglomerates to humidity changes. 
Hence, there is a possibility of agglomeration of material at 
higher moisture without the risk of decreasing mechanical 
durability of the final product.

During compacting of plant biomass its moisture plays 
a fundamental role [4, 11 , 12, 15] . Inadequate moisture 
can lead to losses in energy consumption and results in the 
formation of agglomerate with inadequate strength proper-
ties. In earlier works the results of studies on the influence 
of moisture and addition of binders on the efficiency of 
compaction of biomass of various origins were presented [6, 
7]. This work is a continuation of the research in this field. 
Hence, the aim of the study is establishment of parameters 
characterizing the compaction process of sugar-beet pulp 
(with the addition of binders) at different moisture contents.

MATERIALS AND METHODS

The experimental material was sugar beet pulp from the 
sugar factory “Krasnystaw”. The raw material was dried 
in accordance with the requirements of standard PN-EN 
14774-1:2010, to achieve a moisture content in the range 
of 10% to 22% (every 3% +/-0.2%). The required moisture 
content was determined using the equation for mass change 
over time based on the following dependence:
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where: m0 – initial mass of material, g; m1 – mass of material 
after drying, g; w0 – initial moisture content of material, %; 
w1 – moisture content of material after drying, %.

The binding agent (calcium lignosulphonate – Ligno-
Bond DD and molasses) was added to material samples with 
various moisture content as the calcium lignosulphonate 
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(amount of 2%) and the molasses (amount of 5%). Material 
without the binder served as the control. The research mate-
rials prepared in this way for the purposes of further analysis 
are marked as: sugar beet pulp without the binder – Zl=0%; 
sugar beet pulp plus calcium lignosulphonate – Zl=2%; sugar 
beet pulp plus molasses – Zl=5%.

The pressure compaction methodology was described in 
the authors’ previous study [8]. The experiment was performed 
with the use of the Zwick Z020/TN2S tensile test machine 
equipped with a pressing unit and a closed die with a cylinder 
(compaction chamber) diameter of 15 mm. The test parame-
ters were as follows: mass of material sample – 2 g, cylinder 
(compacted material) temperature – 20ºC, piston speed – 10 
mm·min-1, maximum unit piston pressure – 113 MPa. Every 
compaction process was performed in three replications.

The results were plotted on a compaction curve showing 
the correlation between compaction force and piston speed. 
The curve was used to determine the maximum material 
density in the chamber ρc and total compaction effort Lc. The 
coefficient of susceptibility to compaction kc (kc = Lc’·(ρc-
ρn)

-1 was calculated, where: Lc’ = Lc·m
-1 – specific compac-

tion effort, m – weight of material sample, ρn – initial bulk 
density of the raw material. The agglomerate density after 
48 of storage (ρa) was determined. 

The compaction degree of the analyzed material in the 
chamber Szm and the compaction of the resulting briquette 
Sza were determined as the quotient of density ρc and ρa, and 
initial density in the compression chamber ρn (Szm= ρc. ρn

-1, 
Sza= ρa. ρn

-1). The mechanical strength of a briquette δm was 
determined in the Brazilian compression test using the Zwick 
Z020/TN2S tensile testing machine (with piston speed of 10 
mm·min-1). The briquette with diameter d and length l was 
compressed transversely to the axis until breaking point, and 
maximum breaking force Fn was determined. Mechanical 
strength δm was calculated using the following formula [9, 16]:
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The correlations between the moisture content, the 
binder content of the examined material and compaction 
parameters were analyzed in the STATISTICA program at 
a significance level of αi = 0.01. 

RESULTS

Regression equations describing the correlations be-
tween compaction parameters, the moisture content in the 
experimental material and the binder content are presented 
in Table 2. The regression analysis revealed that the studied 
correlations can be described by a quadratic equation of 
the second degree or logarithmic equation. The analyzed 
correlations are presented in Figures 1-4.

DENSITY OF MATERIAL IN THE CHAMBER AND 
BRIQUETTE DENSITY

From the test results shown in Figure 1, it is evident that for 
each studied material the increase in moisture content resulted 
in increased density of the material in the chamber, ρc. Addi-
tionally, higher moisture caused a decrease in differences in the 
values of the parameter ρc , depending on the type of material 
being processed. However, in the case of density of agglomerate 
ra,, the largest density increase was observed at moisture content 
ranging from 10 – 16%. In turn, a further increase of moisture 
practically did not influence the density of the agglomerates 
obtained from the pulp with the addition of binders. At 16 and 
19% of moisture the values of agglomerate density were not 
statistically different (p > 0.01). Likewise, agglomerate density 
proved to be statistically insignificant and upon the nature of 

Ta b l e  1 .  Regression equations describing the correlations between density ρc, ρa, compactive effort Lc
’, coefficient kc, degree of 

compaction Szm, Sza, and mechanical strength δm , moisture content w, binder content Zl, and the values of determination coefficient R2

Feature Binder content Regression equation R2

Density of material in the chamber, ρc

Zl=0%
Zl=2%
Zl=5%

ρc = 0,431 ln w + 0,473
ρc = 0,303 ln w + 0,865
ρc = 0,243 ln w + 1,061

0,891
0,897
0,927

Density of agglomerate after 48 h., ρa

Zl=0%
Zl=2%
Zl=5%

ρa= -0,006w2 + 0,201w – 0,599
ρa= -0,004w2 + 0,131w – 0,037
ρa= -0,004w2 + 0,14w – 0,088

0,853
0.951
0,878

Compression work, Lc
’

Zl=0%
Zl=2%
Zl=5%

Lc
’
 = 0,103w2 – 5,035w + 69,9

Lc
’
 = 0,056w2 – 3,411w + 60,46

Lc
’
 = 0,056w2 – 3,244w + 60,19

0,998
0,993
0,995

Coefficient of susceptibility to compaction, 
kc

Zl=0%
Zl=1%
Zl=2%

kc = 0,143w2 – 6,128w + 72,38
kc =0,108w2 – 4,922w + 63,39
kc = 0,085w2 – 4,098w + 57,31

0,995
0,998
0,992

Degree of compaction of material, Szm

Zl=0%
Zl=2%
Zl=5%

Szm= -0,015w2+0,538w+ 1,822
Szm= -0,015w2+0,363w+ 3,571
Szm= -0,007w2+0,256w+ 4,618

0,967
0,954
0,958

Degree of compaction of agglomerate, Sza

Zl=0%
Zl=2%
Zl=5%

Sza = -0,024w2+0,76w-2,005
Sza = -0,015w2+0,529w-0,033
Sza = -0,014w2+0,497w+0,146

0,848
0,831
0,932

Agglomerate mechanical strength, δm

Zl=0%
Zl=2%
Zl=5%

δm= -0,011w2 +0,422w – 2,831
δm= -0,014w2 +0,495w – 2,424
δm= -0,012w2 +0,431w – 1,873

0,983
0,978
0,936
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the binder used (calcium lignosulfonate 2 % or 5% molasses). 
However, during compaction of beet-pulp without addition of 
binders, in the range of 16-22% moisture a sharp decrease in 
the density of the final product occurred. In each experiment 
higher values of the analyzed parameters were characteristic 
for the pulp with binder. Parameter ρc ranged from 1.42 to 1.79 
g·cm-3 and parameter ρa from 0.83 to 1.2 g·cm-3.

Fig. 1. Correlation between material density in the chamber (ρc), 
agglomerate density (ρa) and moisture content (w) at various 
binder content levels (zl)

DEGREE OF AGGLOMERATE COMPACTION

Changes in the degree of compaction of the material in 
the chamber and the agglomerate after storage are illustrated 
in Figure 2. For all materials tested the highest values were 
found at 16% of moisture content, and the smallest at moisture 
of 10%. The maximum density of the material in the chamber, 
ρc for the application of 16% moisture content is on average 
6.7 times higher than the initial density material ρn, regard-
less of amount of binder addition. It should also be noted 
that at higher moisture contents, differences in the degree of 
compaction resulting from type of raw material diminished. 

The highest compactions level of the agglomerate Sza 
were achieved for pulps with addition of binders and com-
pacted at moisture 16 and 19%. In such processing condi-
tions the density of agglomerate was about 4.5 times of the 
initial pulp density.

Fig. 2. Correlation between the degree of material compaction 
(Szm), agglomerate compaction (Sza) and moisture content (m) at 
various binder content levels (zl)

COMPACTION EFFORT AND SUSCEPTIBILITY 
TO COMPACTION 

Data presented in figure 3 show that the increasing of 
moisture content of beet pulp resulted in an increase of 
its ability to compaction. Probably, due to the increase of 
water content material becomes more soft (plastic), and 
consequently the energy inputs required for its compaction 
decreases. The value of the specific work of compaction 
Lc’ ranged from 9.23 to 33.87 J∙g-1. The highest values   of 
the energy were obtained for the pulp containing 5% of 
molasses, and the smallest for the pulp without addition of 
binders. It can be assumed that addition of binders caused an 
increase of the coefficient of internal friction of the material 
particles as well as the increase of friction of the die wall. 
Consequently, this led to the increased inputs of specific 
compaction work and reduction of the material susceptibility 
to compaction (fig. 3).  The obtained values of the coefficient 
kc ranged from 6.04 to 25.64 (J·g-1)·((g.·cm-3))-1. Wherein at 
the moisture content of 10% there was no statistically sig-
nificant differences in the values   of kc resulting from type of 
compacted material ( p> 0.01). However, further increase of 
moisture caused that the highest susceptibility to compaction 
was each time observed for the beet pulp without binders.

Fig. 3. Correlation between compaction effort (Lc’ ), coefficient 
of susceptibility to compaction (kc) and moisture content (w) at 
various binder content levels (zl)

MECHANICAL STRENGTH OF THE AGGLOMERATE

The results of mechanical resistance σn showed that, for 
each type of material, the agglomerate strength increased 
with an increase of moisture content in the range of 10 – 19% 
(Fig. 4). However, the increase of moisture content to 22%, 
for all raw materials, resulted in a decline of the parameter 
value. Mechanical strength ranged from 0.75 to 2.21 MPa. 
The highest values were observed for the agglomerates ob-
tained during compaction of the pulp with 2% addition of 
calcium lignosulfonate, and at 19% moisture. Slightly lower 
values   were noted for the agglomerate obtained from the 
pulp containing 5% molasses. It should also be noted that 
with the increase in moisture, the differences in the values   
of σn (resulting from the impact of the type of test material) 
remained stable. Addition of binder to the pulp allowed to 
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achieve an average 34% increase of agglomerate strength 
σn compared to the control material.

Fig. 4. Correlation between mechanical strength of agglomerate 
(δm) and moisture content (w) at various binder content levels (zl)

CONCLUSIONS

The following conclusions can be drawn from the results 
of the study: 
1. It was found that the density of the material in the com-

paction chamber – both for the pulp with and without 
binders – increases with increasing moisture content, 
about 16% on average. The increase of moisture in the 
range 10-16% results in an increase in density of the 
agglomerate (average of 28%). In the case of ra a sig-
nificant role of binders addition was also confirmed 
and the resulting average rise of the density achieved 
13.5%.

2. The density of agglomerate obtained from the pulp with 
binder addition was on average 4.2 times higher than the 
initial material density ρn. For the control sample, the 
parameter Sza was on average 3.6 higher.

3. Specific work of compaction and material susceptibil-
ity to compaction decreased with increasing moisture 
content of the material. Mean changes were -61% and 
-70%, respectively. 

4. It was shown that increasing moisture content from 10 
to 19% favors higher mechanical strength of agglomer-
ates (on average 83%). Addition of binders to the pulp 
increases the value of σn on average by 34%.

5. In the case of density and mechanical strength of ag-
glomerates, application of molasses in amount of 5% 
gives results comparable to the use of 2% calcium ligno-
sulfonate additive. However, with regard to the specific 
work of compaction, better results were obtained for the 
pulp with addition of calcium lignosulfonate.
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CIŚNIENIOWE ZAGĘSZCZANIE WYSŁODKÓW 
BURACZANYCH – PARAMETRY PROCESU 

I JAKOŚĆ AGLOMERATU 

Streszczenie: Przedstawiono wyniki badań nad określeniem 
wpływu wilgotności (od 10 do 22%) i dodatku lepiszcza w po-
staci melasy (5%) i lignosulfonianu wapnia (2%) na parametry 
zagęszczania wysłodków buraczanych. Zagęszczanie przeprowa-
dzano przy wykorzystaniu maszyny wytrzymałościowej Zwick 
typ Z020/TN2S i zespołu prasującego z matrycą zamkniętą. 
Zaobserwowano, że wraz ze wzrostem wilgotności rośnie gęstość 
materiału w komorze i gęstość aglomeratu (średnio o 28%). 
Wykazano, iż najniższa energochłonność zagęszczania odnosiła 
się do zagęszczania wysłodków bez dodatku lepiszcza (wartość 
średnia – 17,71 J∙g-1 ). Najwyższa zaś dotyczyła wysłodków z 5% 
dodatkiem melasy (23,53 J∙g-1). Stwierdzono, że najwyższą od-
pornością mechaniczna (2,2 MPa) charakteryzował się aglome-
rat wytworzony z wysłodków z dodatkiem 2% lignosulfonianu 
wapnia, zagęszczanych przy wilgotności 19%.
Słowa kluczowe: wysłodki buraczane, zagęszczanie, wilgotność, 
lepiszcza, lignosulfonian wapnia, LignoBond DD, melasa. 




