PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2012 | 58 | 2 |

Tytuł artykułu

Chemical composition and fumigation toxicity of Laurus nobilis L. and Salvia officinalis L. essential oils on larvae of khapra beetle (Trogoderma granarium Everts)

Treść / Zawartość

Warianty tytułu

PL
Skład chemiczny i toksyczność fumigacyjna olejków eterycznych z Laurus nobilis L. i Salvia officinalis L. na larwy skórojadki zbożowej (Trogoderma granarium Everts)

Języki publikacji

EN

Abstrakty

EN
The essential oil composition of bay laurel (Laurus nobilis L.), and sage (Salvia officinalis L.) leaves was investigated by GC and GC/MS. Composition of L. nobilis essential oil included large amounts of monoterpenes 85.90%, wheras in S. officinalis, monoterpenes and sesquiterpenes were represented by 57.3% and 41.7%, respectively. Fumigant toxicity of the essential oils was tested against larvae of Trogoderma granarium insect. Exposure to vapours of essential oil from bay laurel and sage for 48 h resulted in about 98% and 100% mortality of the larvae at a concentration of 60 and 90 μL/160 cm3 air, respectively. Essential oils of bay laurel showed a higher lethal activity than that of sage with LC50 values of 37.9 and 50.7b μL/L air, respectively, following a 48 h-exposure. These results showed that the essential oil from L. nobilis is potentially useful for management of T. granarium insects populations in stored products.
PL
Za pomocą GC i GC/MS badano skład olejków eterycznych z liści wawrzynu szlachetnego (Laurus nobilis L.) i szałwii (Salvia officinalis L.). Olejek eteryczny z L. nobilis zawierał duże ilości monoterpenów (85,90%), podczas gdy w S. officinalis monoterpeny i seskwiterpeny były obecne w zbliżonych ilościach, odpowiednio 57,3% i 41,7%. Toksyczność fumigacyjną oparów olejku eterycznego badano na larwach owada Trogoderma granarium. Czterdziestoośmiogodzinna ekspozycja na opary olejku wawrzynu i szałwii spowodowała 98% i 100% śmiertelność larw przy zastosowaniu odpowiednio stężenia 60 μl /160 cm3 i 90 μl/160 cm3 powietrza. Olejek z wawrzynu powodował wyższą śmiertelność niż olejek z szałwii; wartości LC50 wynosiły odpowiednio 37,9 i 50,7 μl/L powietrza podczas 48-godzinnej ekspozycji. Otrzymane wyniki wskazują, że olejek eteryczny z L. nobilis może być potencjalnie użyteczny w kontroli populacji owada T. granarium w przechowywanych produktach.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

58

Numer

2

Opis fizyczny

p.26-37,fig.,ref.

Twórcy

autor
  • Department of Molecular Biology and Biotechnology AECS, PO Box 6091, Damascus, Syria
autor
autor

Bibliografia

  • 1. Rajendran S. Postharvest pest losses. In: Pimentel, D. (ed.), Encyclopedia of Pest Management. New York 2002:654–656.
  • 2. Lowe S, Browne M, Boudjelas S, DePoorter M. 100 of the world’s worst invasive alien species: a selection from the global invasive species database. Invasive species specialist sroup, World Conservation Union IUCN) 2000. http://www.issg.org/booklet.pdf. Accessed 27 September 2005.
  • 3. Ghanem I, Shamma M. Effect of nonionizing radiation (UVC) on the development of Trogoderma granarium Everts. J Stored Prod Res 2007; 43(4):662–366.
  • 4. White NDG, Leesch JG. Chemical control. In: Subramanyam B, Hagstrum DW. (eds.). Integrated management of insects in stored products. New York 1995:287–330.
  • 5. Jembere B, Obeng-Ofori D, Hassanali A, Nyamasyo GNN. Products derived from the leaves of Ocimum kilimanndscharicum (Labiatae) as post- harvest grain protectants against the infestation of three major stored product insect pests. Bull Entomol Res 1995; 85(3):361–367.
  • 6. Okonkwo EU, Okoye WJ. The efficacy of four seed powders and the essential oils as protectants of cow pea and maize grain against infestation by Callosobruchus maculates (Fabricius) (Coleoptera: Bruchidae) and Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae) in Nigeria. Int J Pest Manag 1996; 42(3):143-146.
  • 7. Rajendran S, Sriranjini V. Plant products as fumigants for stored-product insect control. J Stored Prod Res 2008; 44(2):126–135.
  • 8. Taylor R W D. Phosphine – a major fumigant at risk. International Pest Control 1989; 31(1):10-14.
  • 9. MBTOC. Report of the methyl bromide technical options committee. UNEP, Nairobi 2002.
  • 10. Prabhakaran S. Commercial performance and global development status of Profumes gas fumigant. In: roceedings of the Ninth International Working Conference on Stored Product Protection. Brazilian Post-harvest Association, Campinas, Sao Paulo 2006:635–641.
  • 11. Desmarchelier JM. Carbonyl sulphide as a fumigant for control of insects and mites. In: Stored product protection. Proceedings of the sixth international working conference on stored-product protection. Wallingford 1994:75–81.
  • 12. Ryan R, Grant N, Nicolson J, Beven D, Harvey A. SterigasTM and CosmicTM: update on proposed new fumigants. In: Proceedings of the ninth international working conference on stored product protection. Sao Paulo 2006:624–629.
  • 13. Damcevski K, Dojchinov G, Haritos VS. VAPORMATETM, a formulation of ethyl formate with CO2, for disinfestation of grain. Proceedings of the Australian postharvest technical conference. Canberra 2003:199–204.
  • 14. Shaaya E, Kostjukovski M, Eilberg J, Sukprakarn C. Plant oils as fumigants and contact insecticides forthe control of stored-product insects. J Stored Prod Res 1997; 33(1):7-15.
  • 15. Papachristos DP, Stamopoulos DC. Repellent, toxic and reproduction inhibitory effects of essential oilvapours on Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). J Stored Prod Res 2002; 38(2):117–128.
  • 16. Prakash A, Rao J. Botanical Pesticides in Agriculture. CRC Press, Inc., 2000 Corporate Bld., N.W., Boca Raton, FL, USA 1997 pp. 480.
  • 17. Kıvçak B, Mert T. Preliminary evaluation of cytotoxic properties of Laurus nobilis leaf extracts. Fitoterapia 2002; 73(3):242-243.
  • 18. Cosimi S, Rossi E, Cioni PL, Canale A. bioactivity and qualitative analysis of some essential oils from Mediterranean plants against stored-product pests: Evaluation of repellency against Stitophilus zeamais Motschulsky, Cryptolestes ferrugineus (Stephens) and Tenebrio molitor (L.). J Stored Prod Res 2009:1-8.
  • 19. Rozman V, Kalinovic I, Korunic Z. Toxicity of naturally occurring compounds of Lamiaceae and Lauraceae to three stored-product insects. J Stored Prod Res 2007; 43(4):349–355.
  • 20. Sayyah M, Valizadeh J, Kamalinejad M. Anticonvulsant activity of the leaf essential oil of Laurus nobilis against pentylenetetrazole- and maximal electroshock-induced seizures. Phytomedicine 2002;9(3):212–216.
  • 21. Pino J, Borges P, Roncal E. The chemical composition of bay leaf oil from various origins. Die Nahrung 1993; 37(6):592–595.
  • 22. Matsuda H, Kagerura T, Toguchia I, Ueda H, Morikawa T, Yoshikawa M. Inhibitory effects ofsesquiterpenes from Bay leaf on nitric oxide production in lipopolysaccharide-activated macrophages structure requirement and role of heat shock protein induction. Life Sci 2000; 66(22):2151–21
  • 23. Dadalioglu I, Evrendilek GA. Chemical Compositions and antibacterial effects of essential oils of Turkish Oregano (Origanum minutiflorum), Bay (Laurus nobilis), Spanish Lavender (Lavandula stoechas L.), and Fennel (Foeniculum vulgare) on Common Food borne Pathogens. J Agric Food Chem 2004; 52 (26):8255- 8260.
  • 24. Qamar S, Chaudhary FM. Antifungal activity of some essential oil from local plants. Pak. J Sci Indust Res 1991; 34(1):30–31.
  • 25. Eidi A, Eidi M. Antidiabetic effects of sage (Salvia officinalis L.) leaves in normal and streptozotocininduced diabetic rats. Diabetes and Metabolic Syndrome. Clin Res Rev 2009; 3(1):40–44.
  • 26. Clevenger JF. Apparatus for the determination of volatile oil. J Am Pharm Assoc 1928; 17:345-349.
  • 27. Tayoub G, Schwob I, Bessie`re JM, Masotti V, Rabier J, Ruzzier M et al.. Composition of volatile oils of Styrax (Styrax officinalis L.) leaves at different phenological stages. Biochem Syst Ecol 2006; 34(7):705–
  • 28. Adams RP. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th ed. Carol Stream 2007.
  • 29. Finney DJ. Probit analysis, 3rd ed. Cambridge University, London, UK 1971: 19 - 76.
  • 30. Çakir C. Investigations on the fungi toxic potentials of some plants occurring in Antalya. M.Sc. Thesis, Akdeniz. University, Antalya. Turkish 1992.
  • 31. Isman BM. Plant essential oils for pest and disease management. Crop Prot 2000 19(8-10):603- 608.
  • 32. Isman MB. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 2006; 51(1):45-66.
  • 33. Bakkali F, Averbeck S, Averbeck D, Waomar M. Biological effects of essential oils. A review. Food Chem Toxicol 2008; 46(2):446-475.
  • 34. Kostyukovsky M, Rafaeli A, Gileadi C, Demchenko N, Shaaya E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manag Sci 2002; 58(11):1101–1106.
  • 35. Coats JR, Karr LL, Drewes CD. Toxicity and neurotoxic effects of monoterpenoids in insects andearthworms. In: Hedin PA. (ed.). Naturally occurring pest bioregulators. Washington DC 1991:305–316.
  • 36. Regnault-Roger C, Hamraoui A. Fumigant toxic activity and reproductive inhibition induced by monoterpenes on Acanthoscelides obtectus (Say) (Coleoptera), a bruchid of kidney bean (Phaseolus vulgaris L.). J Stored Prod Res 1995; 31(4):291–299.
  • 37. Ahn YJ, Lee SB, Lee HS, Kim GH. Insecticidal and acaricidal activity of carvacrol and b-thujaplicine derived from Thujopsis dolabrata var. hondai sawdust. J Chem Eco 1998; 24(18):1–90.
  • 38. Lee S, Peterson CJ, Coats JR. Fumigation toxicity of monoterpenoids to several stored product insects. J Stored Prod Res 2002; 39(1):77–85.
  • 39. Lee BH, Choi WS, Lee S.E, Park BS. Fumigant toxicity of essential oil and their constituent compounds towards the rice weevil, Sitophilus oryzae (L.). Crop Prot 2001; 20(4):317-320.
  • 40. Lee BH, Annis PC, Tumaalii F, Choi. WS. Fumigant toxicity of essential oils from the Myrtaceae family and 1, 8-cineole against 3 major stored-grain insects. J Stored Prod Res 2004; 40(5):553-564.
  • 41. Ojimelukwe PC, Alder C. Potential of zimtaldehyde, 4-allyl-anisol, linalool, terpineol and other phytochemicals for the control of the confused flour beetle (Tribolium confusum J.D.V.) (Col: Tenebrionidae). J Pestic Sci 1999; 72(4):81-86.
  • 42. Erler F. Fumigant activity of six monoterpenoids from aromatic plants in Turkey against two stored product pests confused flour beetle, Tribolium confusum, and Mediterranean flour moth, Ephestia kuehniella. J Plant Dis Prot 2005; 112(6):602-611.
  • 43. Kotan R, Kordali S, Cakir A, Kesdek M, Kaya Y, Kilic H. Antimicrobial and insecticidal activities of essential oil isolated from Turkish Salvia hydrangea DC. ex Benth. Biochem Syst Eco 2008; 36 (5-6):360 -368.
  • 44. Houghton PJ, Ren Y, Howes MJ. Acetyl-cholinesterase inhibitors from plants and fungi. Nat Prod Rep 2006; 23 (2):181-199.
  • 45. Enan E. Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol 2001; C130(3):325-337.
  • 46. De-Oliveira ACAX, Ribeiro-Pinto LF, Paumgartten FJR. In vitro inhibition of CYP2B1 monooxygenase by b-myrcene and other monoterpenoid compounds. Toxicol Lett 1997; 92(1):39-46.

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b9bfa4f7-6926-4209-80cd-c0a8c50da0d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.