PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 83 | 4 |

Tytuł artykułu

Stromuling when stressed!

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Stromules are stroma-filled tubules, extruding from the plastid and surrounded by both envelope membranes, but so far, stromules remain enigmatic structures and their function unknown. Stromules can interconnect plastids and have been found to associate with the nucleus, endoplasmic reticulum, Golgi complex, plasma membrane, mitochondria and peroxisomes. This minireview briefly summarizes markers to visualize stromules, inducers of stromules and provides new data about plant virus induced stromules.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

83

Numer

4

Opis fizyczny

p.325-329,fig.,ref.

Twórcy

autor
  • Department Biologie, Lehrstuhl fur Biochemie, Staudtstr.5, 91058 Erlangen, Germany
autor
  • Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca NY, USA
autor
  • Institut fur Biomaterialien und biomolekulare Systeme, Abteilung fur Molekularbiologie und Virologie der Pflanzen, Universitat Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany

Bibliografia

  • 1. Rolland N, Curien G, Finazzi G, Kuntz M, Maréchal E, Matringe M, et al. The biosynthetic capacities of the plastids and integrationbetween cytoplasmic and chloroplast processes. AnnuRev Genet. 2012;46(1):233–264. http://dx.doi.org/10.1146/annurev-genet-110410-132544
  • 2. Stael S, Kmiecik P, Willems P, van der Kelen K, Coll NS, Teige M, et al. Plant innate immunity – sunny side up? Trends Plant Sci. 2014 (inpress). http://dx.doi.org/10.1016/j.tplants.2014.10.002
  • 3. Oikawa K, Kasahara M, Kiyosue T, Kagawa T, Suetsugu N, Takahashi F, et al. CHLOROPLAST UNUSUAL POSITIONING1 is essentialfor proper chloroplast positioning. Plant Cell. 2003;15(12):2805–2815.http://dx.doi.org/10.1105/tpc.016428
  • 4. Cavalier-Smith T. Membrane heredity and early chloroplast evolution. Trends Plant Sci. 2000;5(4):174–182. http://dx.doi.org/10.1016/S1360-1385(00)01598-3
  • 5. Köhler RH, Hanson MR. Plastid tubules of higher plants are tissue-specific and developmentally regulated. J Cell Sci. 2000;113 (pt 1):81–89.
  • 6. Hanson MR, Köhler RH. GFP imaging: methodology and application to investigate cellular compartmentation in plants. J Exp Bot.2001;52(356):529–539. http://dx.doi.org/10.1093/jexbot/52.356.529
  • 7. Sage TL, Sage RF. The functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineerC4 photosynthesis into rice. Plant Cell Physiol. 2009;50(4):756–772.http://dx.doi.org/10.1093/pcp/pcp033
  • 8. Mathur J, Mammone A, Barton KA. Organelle extensions in plant cells. J Integr Plant Biol. 2012;54:851–867. http://dx.doi.org/10.1111/j.1744-7909.2012.01175.x
  • 9. Holzinger A, Buchner O, Lütz C, Hanson MR. Temperature-sensitive formation of chloroplast protrusions and stromules in mesophyll cellsof Arabidopsis thaliana. Protoplasma. 2007;230(1–2):23–30. http://dx.doi.org/10.1007/s00709-006-0222-y
  • 10. Logan DC. The mitochondrial compartment. J Exp Bot. 2006;57(6):1225–1243. http://dx.doi.org/10.1093/jxb/erj151
  • 11. Bishop GJ. Refining the plant steroid hormone biosynthesis pathway. Trends Plant Sci. 2007;12(9):377–380. http://dx.doi.org/10.1016/j.tplants.2007.07.001
  • 12. Gunning BES. Plastid stromules: video microscopy of their outgrowth, retraction, tensioning, anchoring, branching, bridging, andtip-shedding. Protoplasma. 2005;225(1–2):33–42. http://dx.doi.org/10.1007/s00709-004-0073-3
  • 13. Waters MT, Fray RG, Pyke KA. Stromule formation is dependent upon plastid size, plastid differentiation status and the density ofplastids within the cell. Plant J. 2004;39(4):655–667. http://dx.doi.org/10.1111/j.1365-313X.2004.02164.x
  • 14. Schattat MH, Barton KA, Mathur J. The myth of interconnected plastids and related phenomena. Protoplasma. 2014 (in press). http://dx.doi.org/10.1007/s00709-014-0666-4
  • 15. Menzel D. An interconnected plastidom in Acetabularia: implications for the mechanism of chloroplast motility. Protoplasma. 1994;179(3–4):166–171. http://dx.doi.org/10.1007/BF01403955
  • 16. Köhler RH, Zipfel WR, Webb WW, Hanson MR. The green fluorescent protein as a marker to visualize plant mitochondriain vivo. Plant J. 1997;11(3):613–621. http://dx.doi.org/10.1046/j.1365-313X.1997.11030613.x
  • 17. Köhler RH, Cao J, Zipfel WR, Webb WW, Hanson MR. Exchange of protein molecules through connections between higher plant plastids.Science. 1997;276(5321):2039–2042. http://dx.doi.org/10.1126/science.276.5321.2039
  • 18. Natesan SKA, Sullivan JA, Gray JC. Stromules: a characteristic cell-specific feature of plastid morphology. J Exp Bot. 2005;56(413):787–797.http://dx.doi.org/10.1093/jxb/eri088
  • 19. Erickson JL, Ziegler J, Guevara D, Abel S, Klösgen RB, Mathur J, et al. Agrobacterium-derived cytokinin influences plastid morphologyand starch accumulation in Nicotiana benthamiana duringtransient assays. BMC Plant Biol. 2014;14(1):127. http://dx.doi.org/10.1186/1471-2229-14-127
  • 20. Marques JP. In vivo transport of folded EGFP by the pH/TATdependent pathway in chloroplasts of Arabidopsis thaliana. J ExpBot. 2004;55(403):1697–1706. http://dx.doi.org/10.1093/jxb/erh191
  • 21. Schattat M, Klösgen R. Induction of stromule formation by extracellular sucrose and glucose in epidermal leaf tissue of Arabidopsisthaliana. BMC Plant Biol. 2011;11(1):115. http://dx.doi.org/10.1186/1471-2229-11-115
  • 22. Krenz B, Windeisen V, Wege C, Jeske H, Kleinow T. A plastid-targeted heat shock cognate 70 kDa protein interacts with the Abutilon mosaicvirus movement protein. Virology. 2010;401(1):6–17. http://dx.doi.org/10.1016/j.virol.2010.02.011
  • 23. Krenz B, Jeske H, Kleinow T. The induction of stromule formation by a plant DNA-virus in epidermal leaf tissues suggests a novel intraandintercellular macromolecular trafficking route. Front Plant Sci.2012;3:291. http://dx.doi.org/10.3389/fpls.2012.00291
  • 24. Mueller SJ, Lang D, Hoernstein SNW, Lang EGE, Schuessele C, Schmidt A, et al. Quantitative analysis of the mitochondrial and plastid proteomes of the moss Physcomitrella patens reveals protein macrocompartmentation and microcompartmentation. Plant Physiol. 2014;164(4):2081–2095. http://dx.doi.org/10.1104/pp.114.235754
  • 25. Wang W, Zhang Y, Wen Y, Berkey R, Ma X, Pan Z, et al. A comprehensive mutational analysis of the Arabidopsis resistance protein RPW8.2reveals key amino acids for defense activation and protein targeting.Plant Cell. 2013;25(10):4242–4261. http://dx.doi.org/10.1105/tpc.113.117226
  • 26. Breuers FKH, Bräutigam A, Geimer S, Welzel UY, Stefano G, Renna L, et al. Dynamic remodeling of the plastid envelope membranes – atool for chloroplast envelope in vivo localizations. Front Plant Sci.2012;3:7. http://dx.doi.org/10.3389/fpls.2012.00007
  • 27. Kwok EY, Hanson MR. Plastids and stromules interact with the nucleus and cell membrane in vascular plants. Plant Cell Rep. 2004;23(4):188– 195. http://dx.doi.org/10.1007/s00299-004-0824-9
  • 28. Machettira AB, Groß LE, Tillmann B, Weis BL, Englich G, Sommer MS, et al. Protein-induced modulation of chloroplast membrane morphology. Front Plant Sci. 2012;2:118. http://dx.doi.org/10.3389/ fpls.2011.00118
  • 29. Oparka KJ. Getting the message across: how do plant cells exchange macromolecular complexes? Trends Plant Sci. 2004;9(1):33–41. http://dx.doi.org/10.1016/j.tplants.2003.11.001
  • 30. Blackman LM, Boevink P, Cruz SS, Palukaitis P, Oparka KJ. The movement protein of cucumber mosaic virus traffics into sieve elements inminor veins of Nicotiana clevelandii. Plant Cell. 1998;10(4):525–538.
  • 31. Schattat MH, Griffiths S, Mathur N, Barton K, Wozny MR, Dunn N, et al. Differential coloring reveals that plastids do not form networksfor exchanging macromolecules. Plant Cell. 2012;24(4):1465–1477.http://dx.doi.org/10.1105/tpc.111.095398
  • 32. Schattat MH, Klösgen RB, Mathur J. New insights on stromules: stroma filled tubules extended by independent plastids. Plant Signal Behav. 2012;7(9):1132–1137. http://dx.doi.org/10.4161/psb.21342
  • 33. Hanson MR, Sattarzadeh A. Trafficking of proteins through plastid stromules. Plant Cell. 2013;25(8):2774–2782. http://dx.doi.org/10.1105/tpc.113.112870
  • 34. Mathur J, Barton KA, Schattat MH. Fluorescent protein flow within stromules. Plant Cell. 2013;25(8):2771–2772. http://dx.doi.org/10.1105/tpc.113.117416
  • 35. Itoh RD, Yamasaki H, Septiana A, Yoshida S, Fujiwara MT. Chemical induction of rapid and reversible plastid filamentation in Arabidopsisthaliana roots. Physiol Plant. 2010;139(2):144–158. http://dx.doi.org/10.1111/j.1399-3054.2010.01352.x
  • 36. Lohse S. Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of Medicago truncatula. Plant Physiol.2005;139(1):329–340. http://dx.doi.org/10.1104/pp.105.061457
  • 37. Gray JC, Hansen MR, Shaw DJ, Graham K, Dale R, Smallman P, et al. Plastid stromules are induced by stress treatments acting through abscisicacid: stress induction of plastid stromules. Plant J. 2012;69(3):387–398. http://dx.doi.org/10.1111/j.1365-313X.2011.04800.x
  • 38. Shalla TA. Assembly and aggregation of tobacco mosaic virus in tomato leaflets. J Cell Biol. 1964;21:253–264.
  • 39. Caplan JL, Mamillapalli P, Burch-Smith TM, Czymmek K, Dinesh- Kumar SP. Chloroplastic protein NRIP1 mediates innate immunereceptor recognition of a viral effector. Cell. 2008;132(3):449–462.http://dx.doi.org/10.1016/j.cell.2007.12.031
  • 40. Esau K. Anatomical and cytological studies on beet mosaic. J Agric Res. 1944;69:95–117.
  • 41. Ascencio-Ibanez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, et al. Global analysis of Arabidopsis gene expression uncovers acomplex array of changes impacting pathogen response and cell cycleduring geminivirus infection. Plant Physiol. 2008;148(1):436–454.http://dx.doi.org/10.1104/pp.108.121038
  • 42. Miozzi L, Napoli C, Sardo L, Accotto GP. Transcriptomics of the interaction between the monopartite phloem-limited geminivirustomato yellow leaf curl Sardinia virus and Solanum lycopersicumhighlights a role for plant hormones, autophagy and plant immunesystem fine tuning during infection. PLoS ONE. 2014;9(2):e89951.http://dx.doi.org/10.1371/journal.pone.0089951
  • 43. Newell CA, Natesan SKA, Sullivan JA, Jouhet J, Kavanagh TA, Gray JC. Exclusion of plastid nucleoids and ribosomes from stromulesin tobacco and Arabidopsis: absence of nucleoids and ribosomesfrom stromules. Plant J. 2012;69(3):399–410. http://dx.doi.org/10.1111/j.1365-313X.2011.04798.x
  • 44. Kwok EY. GFP-labelled Rubisco and aspartate aminotransferase are present in plastid stromules and traffic between plastids. J Exp Bot.2004;55(397):595–604. http://dx.doi.org/10.1093/jxb/erh062
  • 45. Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, et al. Mobilization of rubisco and stroma-localized fluorescent proteins ofchloroplasts to the vacuole by an ATG gene-dependent autophagicprocess. Plant Physiol. 2008;148(1):142–155. http://dx.doi.org/10.1104/pp.108.122770
  • 46. Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C. Autophagy, plant senescence, and nutrient recycling. J Exp Bot. 2014;65(14):3799–3811. http://dx.doi.org/10.1093/jxb/eru039

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b83e5877-90e7-49a1-8ccf-e64f362b98f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.