PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 67 | 3 |

Tytuł artykułu

Improved production of recombinant human Beta-NGF in Escherichia coli - a bioreactor scale study

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Human nerve growth factor β (β-NGF) is considered a major therapeutic agent for treatment of neurodegenerative diseases. We have previously reported the optimized conditions for β-NGF overproduction in Escherichia coli in a shake-flask culture. In this study the optimal %DO (dissolved oxygen) and post induction temperature values for improved production of β-NGF were found in the bioreactor scale using response surface methodology (RSM) as the most common statistical method. Also, for further enhancement of the yield, different post-induction periods of time were selected for testing. In all experiments, the productivity level and bacterial cell growth were evaluated by western blotting technique and monitoring of absorbance at 600 nm, respectively. Our results indicated that %DO, the post-induction time and temperature have significant effects on the production of β-NGF. After 2 hours of induction, the low post induction temperature of 32°C and 20% DO were used to increase the production of β-NGF in a 5-l bioreactor. Another important result obtained in this study was that the improved β-NGF production was not achieved at highest dry cell weigh or highest cell growth. These results are definitely of importance for industrial β-NGF production.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

67

Numer

3

Opis fizyczny

p.355-363,fig.,ref.

Twórcy

  • Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
autor
  • Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
autor
  • Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

Bibliografia

  • Azaman SNA, Ramakrishnan NR, Tan JS, Rahim RA, Abdullah MP, Ariff AB. 2010. Optimization of an induction strategy for improving interferon-α2b production in the periplasm of Escherichia coli using response surface methodology. Biotechnol Appl Biochem. 56(4):141–150.
  • Banerjee A, Dubey S, Kaul P, Barse B, Piotrowski M, Banerjee UC. 2009. Enantioselective nitrilase from Pseudomonas putida: cloning, heterologous expression, and bioreactor studies. Mol Biotechnol. 41(1):35–41.
  • Bocchini V, Angeletti PU. 1969. The nerve growth factor: purification as a 30 000-molecular-weight protein. Proc Natl Acad Sci USA. 64(2):787–794.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1–2):248–254.
  • Burnette WN. 1981. “Western Blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 112(2):195–203.
  • Çalik P, Yilgör P, Ayhan P, Demir AS. 2004. Oxygen transfer effects on recombinant benzaldehyde lyase production. Chem Eng Sci. 59(22–23):5075–5083.
  • Choi JH, Keum KC, Lee SY. 2006. Production of recombinant proteins by high cell density culture of Escherichia coli. Chem Eng Sci. 61(3):876–885.
  • Choi JH, Lee SY. 2004. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol. 64(5):625–635.
  • Elibol M, Ozer D. 2002. Response surface analysis of lipase production by freely suspended Rhizopus arrhizus. Process Biochem. 38(3):367–372.
  • Fan BS, Lou JY. 2010. Recombinant expression of human nerve growth factor beta in rabbit bone marrow mesenchymal stem cells. Mol Biol Rep. 37(8):4083–4090.
  • Gholami Tilko P, Hajihassan Z, Moghimi H. 2017. Optimization of recombinant β-NGF expression in Escherichia coli using response surface methodology. Prep Biochem Biotechnol. 47(4):406–413.
  • Greene LA, Tischler AS. 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA. 73(7):2424–2428.
  • Hajihassan Z, Abdi M, Roshani Yasaghi E, Rabbani-Chadegani A. 2017. Optimization of recombinant beta-NGF purification using immobilized metal affinity chromatography. Minerva Biotecnol. 29:126–132.
  • Heese K, Low JW, Inoue N. 2006. Nerve growth factor, neural stem cells and Alzheimer’s disease. Neurosignals. 15(1):1–12.
  • Joshi BH, Puri RK. 2005. Optimization of expression and purification of two biologically active chimeric fusion proteins that consist of human interleukin-13 and Pseudomonas exotoxin in Escherichia coli. Protein Expr Purif. 39(2):189–198.
  • Kaya-Çeliker H, Angardi V, Çalık P. 2009. Regulatory effects of oxygen transfer on overexpression of recombinant benzaldehydelyase production by Escherichia coli BL21 (DE3). Biotechnol J. 4(7):1066–1076.
  • Kurokawa Y, Yanagi H, Yura T. 2001. Overproduction of bacterial protein disulfide isomerase (DsbC) and its modulator (DsbD) markedly enhances periplasmic production of human nerve growth factor in Escherichia coli. J Biol Chem. 276(17):14393–14399.
  • Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227(5259):680–685.
  • Larentis AL, Argondizzo APC, Esteves GS, Jessouron E, Galler R, Medeiros MA. 2011. Cloning and optimization of induction conditions for mature PsaA (pneumococcal surface adhesin A) expression in Escherichia coli and recombinant protein stability during longterm storage. Protein Expr Purif. 78(1):38–47.
  • Lee EJ, Lee BH, Kim BK, Lee JW. 2013. Enhanced production of carboxymethylcellulase of a marine microorganism, Bacillus subtilis subsp. subtilis A-53 in a pilot-scaled bioreactor by a recombinant Escherichia coli JM109/A-53 from rice bran. Mol Biol Rep. 40(5):3609–3621.
  • Luzier WD. 1992. Materials derived from biomass/biodegradable materials. Proc Natl Acad Sci USA. 89(3):839–842.
  • Morowvat MH, Babaeipour V, Rajabi Memari H, Vahidi H. 2015. Optimization of fermentation conditions for Recombinant Human Interferon Beta production by Escherichia coli using the response surface methodology. Jundishapur J Microbiol. 8(4):e16236.
  • Papaneophytou CP, Kontopidis GA. 2012. Optimization of TNF-α overexpression in Escherichia coli using response surface methodology: purification of the protein and oligomerization studies. Protein Expr Purif. 86(1):35–44.
  • Papaneophytou CP, Rinotas V, Douni E, Kontopidis G. 2013. A statistical approach for optimization of RANKL overexpression in Escherichia coli: purification and characterization of the protein. Protein Expr Purif. 90(1):9–19.
  • Ram KS, Babu KS, Tabitha G, Rajeshwari K, Lakshmi GJ, Gowd BB, Peravali JB, Rao MS, Rao PV. 2015. High cell density cultivation for the production of industrially important engineered Bi-functional recombinant staphylokinase variant from salt inducible Escherichia coli GJ1158. I.J.B.S.B.T. 7:327–338.
  • Ren Q, Henes B, Fairhead M, Thöny-Meyer L. 2013. High level production of tyrosinase in recombinant Escherichia coli. BMC Biotechnol. 13(1):18–18.
  • Rosano GL, Ceccarelli EA. 2014. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 5:172.
  • Rui L, Wei-chang C, Wei-peng W, Wen-yan T, Xue-guang Z. 2009. Optimization of extraction technology of Astragalus polysaccharides by response surface methodology and its effect on CD40. Carbohydr Polym. 78(4):784–788.
  • Saez NJ, Vincentelli R. 2014. High-throughput expression screening and purification of recombinant proteins in E.coli. Methods Mol Biol. 1091:33–53.
  • Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual 3rd edition. Cold Spring Harbor, New York (USA): Cold Spring-Harbour Laboratory Press.
  • Savari M, Zarkesh Esfahani SH, Edalati M, Biria D. 2015. Optimizing conditions for production of high levels of soluble recombinant human growth hormone using Taguchi method. Protein Expr Purif. 114:128–135.
  • Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 9(7):671–675.
  • Schumann W, Ferreira LCS. 2004. Production of recombinant proteins in Escherichia coli. Genet Mol Biol. 27(3):442–453.
  • Su L, Huang Y, Wu J. 2015. Enhanced production of recombinant Escherichia coli glutamate decarboxylase through optimization of induction strategy and addition of pyridoxine. Bioresour Technol. 198:63–69.
  • Tegel H, Ottosson J, Hober S. 2011. Enhancing the protein production levels in Escherichia coli with a strong promoter. FEBS J. 278(5):729–739.
  • Thiry M, Cingolani D. 2002. Optimizing scale-up fermentation processes. Trends Biotechnol. 20(3):103–105.
  • Wang D, Wang C, Wu H, Li Z, Ye Q. 2016. Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase. J Ind Microbiol Biotechnol. 43(1):45–53.
  • Wejse PL, Ingvorsen K, Mortensen KK. 2003. Xylanase production by a novel halophilic bacterium increased 20-fold by response surface methodology. Enzyme Microb Technol. 32(6): 721–727.
  • Wiesmann C, de Vos AM. 2001. Nerve growth factor: structure and function. Cell Mol Life Sci. 58(5):748–759.
  • Zaslona H, Trusek-Holownia A, Radosinski L, Hennig J. 2015. Optimization and kinetic characterization of recombinant 1,3-β-glucanase production in Escherichia coli K-12 strain BL21/pETSD10 – a bioreactor scale study. Lett Appl Microbiol. 61(1): 36–43.
  • Zhong JJ. 2010. Recent advances in bioreactor engineering. Korean J Chem Eng. 27(4):1035–1041.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b7aa4b40-4ced-46ae-802a-34db5db7dccf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.