PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 32 | 1 |

Tytuł artykułu

Lipid peroxidation and antioxidative response in Arabidopsis thaliana exposed to cadmium and copper

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Formation of lipid hydroperoxides, malondialdehyde (MDA) and hydroxyalkenals (HAEs), membrane damages and antioxidative response of plants expressed as changes in glutathione S-transferase activity (GST) and anthocyanin accumulation were studied in Arabidopsis thaliana (L.) Heynh cv. Columbia plants treated for 7 days with various concentrations: 5, 25, 50, 100 µM Cd and Cu. Increased lipid hydroperoxide content was metal concentration-dependent. The level of MDA + HAE was elevated in Cd- and Cu- treated plants, but it was metal concentration-dependent under Cu stress. Electrolyte leakage measurements showed a larger membrane damage under Cu- than Cd-treatment. In Cu-stressed plants, GST activity was always enhanced in comparison with control, while in plants exposed to Cd it dropped slightly at lower metal concentrations; but at 100 µM Cd it was even higher than in plants treated with the same Cu concentration. Anthocyanin accumulation was considerably higher under Cu than Cd stress. Both lipid peroxidation and antioxidative response was stronger in Cu- than Cd-treated Arabidopsis thaliana plants. Various mechanisms of defense against the lipid peroxidation products, depending on the metal type, are discussed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

32

Numer

1

Opis fizyczny

p.169-175,fig.,ref.

Twórcy

  • Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences
  • Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences
autor
  • Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences

Bibliografia

  • Alfenito MR, Souer E, Goodman CD, Buell R, Mol J, Koes R, Walbot V (1998) Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10:1135–1149
  • Ålin P, Danielson H, Mannervik B (1985) 4-Hydroxyalk-2-enals are substrates for glutathione transferase. FEBS Lett 179:267–270
  • Bartosz G (1997) Oxidative stress in plants. Acta Physiol Plant 19:47–64
  • Bert V, Bonnin I, Saumitou-Laprade P, de Laguérie P, Petit D (2002) Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol 155:47–57
  • Bette A, Kutschera U (1996) Pigment accumulation and photosynthesis in developing rye coleoptiles. Bot Acta 109:194–198
  • Cadenas E (1989) Biochemistry of oxygen toxicity. Annu Rev Biochem 58:79–110
  • Cho U-H, Park J-O (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9
  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36
  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Hölzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266
  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109
  • Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids—a gold mine for metabolic engineering. Trends Plant Sci 4:394–400
  • Djebali W, Zarrouk M, Brouquisse R, El Kahoui S, Limam F, Ghorbel MH, Chaibi W (2005) Ultrastructure and lipid alteration induced by cadmium in tomato (Lycopersicon esculentum) chloroplast membranes. Plant Biol 7:358–368
  • Drążkiewicz M, Skórzyńska-Polit E, Krupa Z (2003) Response of the ascorbate-glutathione cycle to excess cooper in Arabidopsis thaliana (L.). Plant Sci 164:195–202
  • Drążkiewicz M, Skórzyńska-Polit E, Krupa Z (2004) Symptoms of copper-induced oxidative stress and antioxidant defence in Arabidopsis thaliana (L.). BioMetals 17:379–387
  • Duthie G, Crozier A (2000) Plant-derived phenolic antioxidants. Curr Opinion Lipid 11:43–47
  • Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5:193–198
  • Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves; evidence for involvement of oxidative stress. Plant Sci 121:151–159
  • Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Meth Enzymol 186:1–85
  • Iannelli MA, Pietrini F, Fiore L, Petrilli L, Massacci A (2002) Antioxidant response to cadmium in Phragmites australis plants. Plant Physiol Biochem 40:977–982
  • Kappus H (1985) Lipid peroxidation: mechanism, analysis, enzymology and biological relevance. In: Sies H (ed) Oxidative stress. Academic Press, London, pp 273–310
  • Kondo T, Yoshida K, Nakagawa A, Kawai T, Tamura H, Goto T (1992) Structural basis of blue-colour development in flower petals from Commelina communis. Nature 358:515–518
  • Krupa Z (1999) Cadmium against higher plant photosynthesis—a variety of effects and where do they possibly come from? Z Naturforsch 53c:723–729
  • Krupa Z, Baranowska M, Orzeł D (1996) Can anthocyanins be considered as heavy metal stress indicator in higher plants? Acta Physiol Plant 18:147–151
  • Lane TW, Morel FMM (2000) A biological function for cadmium in marine diatoms. Proc Nat Acad Sci USA 97:4627–4631
  • Lange H, Shropshire W, Mohr H (1971) An analysis of phytochrome-mediated anthocyanin synthesis. Plant Physiol 47:649–655
  • Liu D, Jiang W, Gao X (2003) Effects of cadmium on root growth, cell division and nucleoli in root tip cells of garlic. Biol Plant 47:79–83
  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20
  • Lozano-Rodriguez E, Hernandez LE, Bonay P, Carpena-Ruiz RO (1997) Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. J Exp Bot 48:123–128
  • Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342
  • Mannervik B, Guthenberg C (1981) Glutathione transferase. Meth Enzymol 77:231–235
  • Mazhoudi S, Chaoui A, Ghorbal MH, El Ferjani E (1997) Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum Mill). Plant Sci 127:129–137
  • Metwally A, Safronova VI, Belimov AA, Dietz K-J (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178
  • Milosevic N, Slusarenko AJ (1996) Active oxygen metabolism and lignification in the hypersensitive response in bean. Physiol Mol Plant Pathol 49:148–158
  • Nagalakshmi N, Prasad MNV (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160:291–299
  • Rangel Z, Kordan HA (1987) Effect of growth regulators on light-dependent anthocyanins production in Zea mays seedlings. Physiol Plant 69:511–516
  • Rice-Evans C, Miller NJ, Papanga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–158
  • Romero-Puertas MC, Palma JM, Gómez M, del Rio LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686
  • Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130
  • Schröder P (2001) The role glutathione and glutathione S-transferases in plant reaction and adaptation to xenobiotics. In: Grill D, Tausz M, De Kok LJ (eds) Significance of glutathione in plant adaptation to the environment. Kluwer, Dordrecht, pp 185–206
  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144
  • Shewfelt RL, Purvis AC (1995) Toward a comprehensive model for lipid peroxidation in plant tissue disorders. HortScience 30:213–218
  • Siedlecka A, Tukendorf A, Skórzyńska-Polit E, Maksymiec W, Wójcik M, Baszyński T, Krupa Z (2001) Angiosperms (Astraceae, Convolvulaceae, Fabaceae and Poaceae; other than Brassicaceae). In: Prasad MNV (ed) Metals in the environment: analysis by biodiversity. Marcel Dekker, Inc, New York, pp 171–217
  • Skórzyńska-Polit E, Krupa Z (2003) Activity of lipoxygenase in Arabidopsis thaliana—a preliminary study. Cell Mol Biol Lett 8:79–284
  • Skórzyńska-Polit E, Drążkiewicz M, Krupa Z (2003) The activity of the antioxidative system in cadmium-treated Arabidopsis thaliana. Biol Plant 47:71–78
  • Skórzyńska-Polit E, Pawlikowska-Pawlęga B, Szczuka E, Drążkiewicz M, Krupa Z (2006) The activity and localization of lipoxygenases in Arabidopsis thaliana under cadmium and copper stresses. Plant Growth Reg 48:29–39
  • Spiteller G (1996) Enzymatic lipid peroxidation—a consequence of cell injury? Free Radical Biol Med 21:1003–1009
  • Spiteller G (2003) The relationship between changes in the cell wall, lipid peroxidation, proliferation, senescence and cell death. Physiol Plant 119:5–18
  • Tsuda T, Shiga K, Ohshima K, Kawakishi S, Osawa T (1996) Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L. Biochem Pharm 52:1033–1039
  • Uchida K (2003) 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 42:318–343
  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b5bb780b-c672-40f1-8dcb-8be2979729e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.