PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 2 |

Tytuł artykułu

Using an attapulgite-activated carbon composite ceramisite biofilter to remove dibutyl phthalate from source water

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study developed an attapulgite-activated carbon composite ceramisite (AACCC) biofilter for removing trace-level dibutyl phthalate (DBP) from micro-polluted drinking source water. Total pore area and average pore diameter of AACCC were estimated to be 112.2 m²/g and 19.8 nm, respectively, while the AACCC showed considerable adsorptive capacity due to its mesoporous structure, i.e., it would be used as an ideal filtration media. Although AACCC could adsorb DBP, biological AACCC covered by different types of microorganisms appeared to be more effective in removing DBP from source water. At a filtration velocity of 2 m/h during two influent concentrations (20 μg/L and 50 μg/L), the DBP removals in AACCC biofilter were higher than the AACCC filter, being 1.2 μg/L and 1.9 μg/L. The pseudo-first-order kinetic model can serve as a good method for estimating removal performance of DBP using an AACCC biofilter. This clearly demonstrated the potential of the AACCC biofilter as a cost-effective and high-efficiency process for removing trace-level DBP from drinking source water.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

2

Opis fizyczny

P.897-903,fig.,ref.

Twórcy

autor
  • School of Civil Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
  • Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
autor
  • School of Civil Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
autor
  • School of Civil Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
autor
  • School of Civil Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
autor
  • School of Civil Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
autor
  • Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
  • School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

Bibliografia

  • 1. WANG Z., Efficient adsorption of dibutyl phthalate from aqueous solution by activated carbon developed from phoenix leaves. International Journal of Environmental Science and Technology. 12 (6), 1923, 2015.
  • 2. GUO Y., ZHANG Z.F., LIU L.Y., LI Y.F., REN N.Q., KANNAN K. Occurrence and profiles of phthalates in foodstuffs from China and their implications for human exposure. Journal of Agricultural and Food Chemistry. 60 (27), 6913, 2012.
  • 3. LIU X.W., SHI J.H., BO T., ZHANG H., WU. W, CHEN Q.C., ZHAN X.M. Occurrence of phthalic acid esters in source waters: a nationwide survey in China during the period of 2009-2012. Environmental Pollution. 184, 262, 2014.
  • 4. HUANG G.L., SUN H.W., SONG Z.H. Interactions between dibutyl phthalate and aquatic organisms. Bulletin of Environmental Contamination and Toxicology. 63 (6), 759, 1999.
  • 5. HU X.X., SHI W., WEI S., ZHANG X.W., FENG J.F., HU G.J., CHEN S.L., GIESY J.P., YU H.X. Occurrence and potential causes of androgenic activities in source and drinking water in China. Environmental Science & Technology. 47 (18), 10591, 2013.
  • 6. PANT N., KUMAR G., UPADHYAY A.D., PATEL D.K., GUPTA Y.K., CHATURVEDI P.K. Reproductive toxicity of lead, cadmium, and phthalate exposure in men. Environmental Science and Pollution Research. 21 (18), 11066, 2014.
  • 7. LI F.M., WU M., YAO Y., ZHENG X., ZHAO J., WANG Z.Y., XING B.S. Inhibitory effects and oxidative target site of dibutyl phthalate on Karenia brevis. Chemosphere. 130, 32, 2015.
  • 8. WANG L., FU G.Y., ZHAO B., ZHANG Z.H., GUO X.F., ZHANG H.W. Degradation of di-n-butyl phthalate in aqueous solution by the O³/UV process. Desalination and Water Treatment. 52 (4–6), 824, 2014.
  • 9. XU L.J., CHU W., GRAHAM N. Degradation of di-n-butyl phthalate by a homogeneous sono-photo-Fenton process with in situ generated hydrogen peroxide. Chemical Engineering Journal. 240, 541, 2014.
  • 10. YUAN S.Y., HUANG I.C., CHANG B.V. Biodegradation of dibutyl phthalate and di-(2-ethylhexyl) phthalate and microbial community changes in mangrove sediment. Journal of Hazardous Materals. 184, 826, 2010.
  • 11. WHANGSUK W., SUNGKEEREE P., NAKASIRI M., THIENGMAG S., MONGKOLSUK S., LOPRASERT S. Two endocrine disrupting dibutyl phthalate degrading esterases and their compensatory gene expression in Sphingobium sp. SM42. International Biodeterioration & Biodegradation. 99, 45, 2015.
  • 12. CHEN X., ZHANG X.L., YANG Y., YUE D.M., XIAO L., YANG L.Y. Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate by newly isolated Camelimonas sp and enzymatic properties of its hydrolase. Biodegradation 26 (2), 171, 2015.
  • 13. ZEARLEY T.L., SUMMERS R.S. Removal of trace organic micropollutants by drinking water biological filters. Environmental Science & Technology. 46 (17), 9412, 2012.
  • 14. SCHARF R.G., JOHNSTON R.W., SEMMENS M.J., HOZALSKI R.M. Comparison of batch sorption tests, pilot studies, and modeling for estimating GAC bed life. Water Research. 44 (3), 769, 2010.
  • 15. LI Z.T., DVORAK B., LI X. Removing 17 beta-estradiol from drinking water in a biologically active carbon (BAC) reactor modified from a granular activated carbon (GAC) reactor. Water Research. 46 (9), 2828, 2012.
  • 16. HEDEGAARD M.J., ALBRECHTSEN H.J. Microbial pesticide removal in rapid sand filters for drinking water treatment - Potential and kinetics. Water Research. 48, 71, 2014.
  • 17. LIAO X.B., CHEN C., ZHANG J.X., DAI Y., ZHANG X.J., XIE S.G. Dimethylamine biodegradation by mixed culture enriched from drinking water biofilter. Chemosphere. 119, 935, 2015.
  • 18. WANG X., LIU L., YAO M.Q., ZHANG H.W., BAO J. Degradation of Carbofuran in Contaminated Soil by Immobilized Laccase. Polish Journal of Environmental Studies. 26 (3), 1305, 2017.
  • 19. WANG Z., ZHONG M.G., WAN J.F., XU G.J., LIU Y. Development of attapulgite composite ceramsite/quartz sand double-layer biofilter for micropolluted drinking source water purification. International Journal of Environmental Science and Technology. 13 (3), 825, 2016.
  • 20. BUCHANAN W., RODDICK F., PORTER N. Removal of VUV pre-treated natural organic matter by biologically activated carbon columns. Water Research. 42 (13), 3335, 2008.
  • 21. MATHIEU L., BERTRAND I., ABE Y., ANGEL E., BLOCK J.C., SKALI-LAMI S, FRANCIUS G. Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress. Water Research. 55, 175, 2014.
  • 22. YANG B.M., LIU J.K., CHIEN C.C., SURAMPALLI R.Y., KAO C.M. Variations in AOC and microbial diversity in an advanced water treatment plant. Journal of Hydrology. 409 (1-2), 225, 2011.
  • 23. GUO J.F., GUO P., Li S.M., LI X.J., LUO C.L., WANG H., JIANG Q. Screening an effective aerobic denitrification strain and its performance in MBR. Polish Journal of Environmental Studies. 26 (3), 1089, 2017.
  • 24. ZHANG X.Q., LI Y.S., LI H. Enhanced Bio-Immobilization of Pb Contaminated Soil by Immobilized Bacteria with Biochar as Carrier. Polish Journal of Environmental Studies. 26 (1), 413, 2017.
  • 25. CHIEN C.C., KAO C.M., CHEN C.W., DONG C.D., WU C.Y. Application of biofiltration system on AOC removal: Column and field studies. Chemosphere. 71 (9), 1786, 2008.
  • 26. DALAHMEH S.S., JONSSON H., HYLANDER L.D., HUI N., YU D, PELL M. Dynamics and functions of bacterial communities in bark, charcoal and sand filters treating greywater. Water Research. 54, 21, 2014.
  • 27. HAIG S.J., QUINCE C., DAVIES R.L., DOREA C.C., COLLINS G. Replicating the microbial community and water quality performance of full-scale slow sand filters in laboratory-scale filters. Water Research. 61, 141, 2014.
  • 28. REUNGOAT J., ESCHER B.I., MACOVA M., KELLER J. Biofiltration of wastewater treatment plant effluent: Effective removal of pharmaceuticals and personal care products and reduction of toxicity. Water Research. 45 (9), 2751, 2011.
  • 29. HO L., GRASSET C., HOEFEL D., DIXON M.B., LEUSCH F.D.L., NEWCOMBE G., SAINT C.P., BROOKES J.D. Assessing granular media filtration for the removal of chemical contaminants from wastewater. Water Research. 45 (11), 3461, 2011.
  • 30. MENDEZ-DIAZ J.D., DAIEM M.M.A., RIVERA-UTRILLA J., SANCHEZ-POLO M., BAUTISTA-TOLEDO I. Adsorption/bioadsorption of phthalic acid, an organic micropollutant present in landfill leachates, on activated carbons. Journal of Colloid and Interface Science. 369, 358, 2012.
  • 31. HOYLAND V.W., KNOCKE W.R., FALKINHAM J.O., PRUDEN A., SINGH G. Effect of drinking water treatment process parameters on biological removal of manganese from surface water. Water Research. 66, 31, 2014.
  • 32. ZHANG X.X., ZHANG Z.Y., MA L.P., LIU N., WU B., ZHANG Y., LI A.M., CHENG S.P. Influences of hydraulic loading rate on SVOC removal and microbial community structure in drinking water treatment biofilters. Journal of Hazardous Materals. 178 (1-3), 652, 2010.
  • 33. HOWARD P.H., STITELER W.M., MEYLAN W.M., HUEBER A.E., BEAUMAN J.A., LAROSCHE M.E., BOETHLING R.S. Predictive model for aerobic biodegradability developed from a file of evaluated biodegradation data. Environmental Toxicology and Chemistry. 11 (5), 593, 1992.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b47dc776-ff2c-4cc2-9af3-086043fb5717
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.