RAIL VEHICLE WHEELS COMMON FAULTS CHARACTERISIC

Nadezhda Makhortova, Yuri Vivdenko

Volodymyr Dahl East-Ukrainian National University, Lugansk, Ukraine

 $S\,u\,m\,m\,a\,r\,y$. The article focuses on the issue of rail vehicle common faults characteristic with the purpose of choosing optimal method of their diagnosis in service.

K e y w o r d s. Wheelsets, undercarriage, wheelset faults, rim, profile, flange.

INTRODUCTION

At the present stage of railway transport development it is necessary to pay special attention to the issue of passenger and goods transportation safety.

Wheelsets are the major element of undercarriage because traffic safety depends on their condition in the first place. They receive the weight of the body and wagons with all the equipment (sprung mass) as well as their own weight with details that are mounted directly on the wheelsets (unsprung weight) and convey it to the rails. In addition, the wheelset transmitts the torque of the traction motor; tractive and braking forces are realized at the place of wheels and rails contact. As the locomotive moves each wheelset takes hits from the track irregularity and guiding forces, and in turn, strongly affects the upper track structure and assembly of articulated wheelsets with a cart itself. Therefore, monitoring the wheelset assembly state is an actual task.

There is an analysis of wheelset details faults in works [1, 2, 4, 10, 11, 13]. However, each author considers faults that are specific to the individual assemblies of the wheelset.

OBJECTS AND PROBLEMS

Wheelset construction has not changed since the emergence of rail transport, and is mainly determined by the way of torque transfer from the traction motor, traction motor suspension method and the type of wheel centers.

Wheelset consists of an axle and two wheels. In order to transfer torque one or two tooth gears should be pressed on the axle, or there could be mounted the hollow shaft which is attached to the wheels with the help of elastic fingers. Traction gears are in their turn pressed on the shaft [12, 13, 16, 20].

Most domestic locomotives are operated with the axle load of up to 225 kN and can have wheelsets with wheels of 870-1050 mm in diameter. Wheels on new passenger locomotives DEL70 (diesel-electric locomotive) and DEL75 have a diameter of 1220 mm; wheel diameter of 1250 mm is accepted for freight locomotives with the load of axle on the rails up to 245 kN. [4, 5, 6].

Figure 1 shows profile of standard diesel wheelset rim according to State Standard 11018-87 [6]. The outer surface (roll surface) has a special profile which consists of the flange (ledge), main surface with the conical shape of 1:10 and lateral surface with the conical shape of 1:3,5. Flange directs the movement of the wheel on the rail track and prevents the wheelset of derailment. The main conical surface allows centering wheel pair in fixed tracks and facilitates the passage curves sections of track without slipping and excessive wear. The main conical surface allows centering of the wheelset in tracks and facilitates the passage of

the curved sections of track without slipping and excessive wear. The lateral conical surface and chamfer facilitate the passage of switches [17-19].

Fig. 1. Flange profile according to State Standard 11018-87

Flange is the most wearing part of the wheelset. Wear in the time of rolling circle is called clearance under flange; wear of the flange's lateral side is called flange worn sharp. Wheelsets in proportion to their wear come to tyre returning at which their original profile is restored. Marginal rate of wear and flange thickness are set according to the rules for technical operation.

In the operation of wheelsets there happen their natural wear and damage [5, 9].

The analysis of the wheelsets classification shows that the main faults of wheelset axles are the following [3, 6, 7, 8]:

- cracks in the wheel seat (on the inside of the wheel hub and rarely in the centre piece).
- scuff marks of the wheelset axle in the centre piece.
- weakening and shift of the wheel on the axle.
- modification of the axle journal (which occurred because of roller bearings usage in car boxes).

Possible causes of wheelset axles faults emergence and faults themselves are shown in table 1.

Wheels in turn can have the following faults[4,10, 14, 15, 17 - 19]:

- cracks;

- splitting of rim, disc and hub of solid-rolled wheels;

- fractures;

- uneven wheel rolling;

- even rim rolling;

- flange wear;

- flange undercut;

- sliders (dents);

- chips (local depressions on the surface of the wheel rim of wheelset, appearing due to peeling or chipping of metal);

- blisters in the wheels.

- In addition to the above-mentioned faults of the wheels, there are often found circular gallings on the roll surface (fig. 2), metal displacement and sharp worn in the area where the undercut part of flange joins its top (fig. 3).

LADIC I WINCESCE ALLES TAULT
I ADIC I WINCEISCI ANICS IAUIL

r	1	1
Fault	Possible causes of their emergence	Geometrical characteristics of the faults
Cracks in the	Strikes experienced by	Hidden defects
wheel seat	wheelset under the	and transverse
	condition of the poor	cracks of≤2-4 mm
	quality of wheelset	in depth, inclined
	formation, while	cracks of≤ 2 - 8
	loading and unloading	mm.
	of wheelsets	
Scuff marks of	It is caused by incorrect	The depth of scuff
the wheelset axle	assembly and	is 2 -2,5 mm.
in the centre	adjustment of the brake	
piece	linkage	
Scuff marks in	Friction of the walls of	No more than 2
the before-hub	box with the axle	mm.
part	because of incorrect	
	assembly of axle unit	
	and other reasons	
Weakening and	Among the signs of	The deviation
shift of the wheel	attachment hub	from the nominal
on the axle	weakening there is	size according to
	appearance of rust or oil	State Standard
	at the hub of the wheel	30237-96
	on the inside, crack of	
	paint around the	
	perimeter of the	
	connection to the hub	
Modification of	The use of roller	Conicity is $\leq 0,1$
the axle journal	bearings in the car box	mm, ellipticity is
		≤ 0,05 mm,
		waviness is $\leq 0,02$
		MM.

Fig. 2. Circular gallings on the roll surface

Fig. 3. Example of flange worn sharp

Circular galling is allowed at the base of flange with the depth of no more than 1mm and at the inclination of 1:7 it should be 2 mm at most or no more than 15 MM broad. Metal displacement (gain) may be at a height of wheelsets of passenger cars no more than 0,5 mm.

Possible causes of wheel faults emergence and faults themselves are shown in table 2.

Circular crack in the drive wheels can appear due to the tight fitting of drive axle. Wheelsets with cracks in the rim and solid-rolled wheels drives are not allowed to operate. All of these defects of wheelset parts lead to quick wheelset breakdown, and also serve as the source of additional dynamic loads that cause vibrations in the frequency range close to resonance.

Taking into account the results of this study, in order to ensure reliable operation of the rolling stock it is necessary to create a system for wheelsets defects identifying. The basis of this system is the detection of wheelset defects by methods and techniques of vibro-acoustic signal.

Fault	Possible causes of their emergence	Geometrical characteristics of the faults
Cracks; splitting of	Shock interaction of wheel and rail	It is not allowed to operate wheel sets if they have a surface
rim, disc and hub of		spalling on the outer rim edge, including local split circular
solid-rolled wheels;		roll, with depth (radial tires) exceeding 10 mm, or if the width
fractures		of the remainder of the rim in spalling is less than 120 mm, or
		in a damaged place, regardless of the size of spalling, there is
		a crack extending into the metal
Uneven wheel	It occurs mainly due to the stiffness of the	Uneven wheel rolling is standardized only for passenger cars:
rolling	way, high speed, and formation of defects	< 2 mm (for wheelset with gear from the front axle it is < 1
	of the brake origin on the roll surface	mm)
Even rim rolling	Its friction on the rails	≤ 4 mm for wheelsets with gear drive from the end of the axle
2.0011000008		and < 5 mm for other wheelsets of passenger cars with speed
		from 121 to 160 km/h; < 7 mm for long distance necessary
		from 121 to 100 km/n, \leq / min for long-distance passenger
		with speed up to kin/h,
		≤ 8 mm for cars of local and commuter passenger train; more
		than 9 mm for freight and reirigerator cars used in the trains at
		speed up to 120 km/n, for empty cars, used for loading or
		included to deadnead routes the wheel rolling of $\leq 8,5$ mm is
71		not allowed
Flange wear	Contact with the rail due to the winding	At speed of ≤ 120 km/h the flange thickness is more than 33
	movement of wheelset on straight way and	mm or less than 28 mm at the locomotive when measured at a
	car passing on curves	distance of 20 mm from the top of the flange at a height of 30
		mm, while the rolling stock with flange height of 28 mm
		measured at a distance of 18 mm from top of the flange
Flange undercut	Larger difference of lateral bogie frames	It is not allowed to use cars, which have wheelsets with
(especially often	bases; large difference between the	vertical undercut of the flange on a height of more than 18
appears in eight-	diameters of wheels mounted on a single	mm from wheel rolling circle or flange worn sharp
wheel cars)	axle; and if there is a large gap between the	
	axle boxes and jaws, as well as the warp of	
	a bogie frame; wheels which were forced	
<u> </u>	on the axle irregularly	
Sliders (dents)	They are formed on the roll surface when	Having roller bearing axle boxes with depth of ≤ 1 mm; plain
	sliding on rails in case of jamming of	pearings with depth of ≤ 2 mm.
	wheelsets	
Chips	Flaking or pitting of the metal.	Depth is ≤ 10 mm, length is ≤ 25 mm for passenger cars,
	They occur most often in the place of	thickness of the wheel rim in the place of chip is: ≤ 31 mm.
	sliders and are located symmetrically on	for passenger trains with speed of up to 120km/h; it is \leq 34
	one line of both wheels	mm., if speed is up to 140 km/h; and it is \leq 40 mm. if speed is
		up to 160 km/h
Blisters in the	Non-metallic inclusions in the metal,	Not standardized
wheels	which are found on the roll surface after its	
	abrasion or peeling	
Circular gallings on	Interaction with the surface of the pad.	Depth at the base of flange is ≤ 1 mm.
the roll surface	large axial and lateral loads	at the inclination 1:7 is $\leq 2 \text{ mm}$.
		width is <15 mm metal displacement (gain) is <0.5 mm
Circumferential	Tight fitting of drive ayle	< 2 - 4 mm
crack in the disk of	inght hung of drive axie	
wheel		

Table 2. Wheel faults

CONCLUSIONS

Proposed classification is of great importance for the analysis of defects causes and development of their elimination measures. It establishes link between the characteristics of wear, wheelset damage and operating conditions.

Therefore, for safety movement of rolling stock it is necessary:

- to develop a systematic approach when predicting running gear faults;

- to implement monitoring and diagnostics based on methods of vibroacoustics natural frequencies vibroacoustics, acoustic emission, electromagnetic acoustics, multi-angle acoustogalographics;

- to develop a new generation of diagnostic systems, which give three-dimensional image of defects with predictable operation life;

- to introduce fixed and on-board diagnostic of the rolling stock state assessment.

REFERENCES

- Kamaev A.A., Apanovich N.G. and others, ed. by A.A. Kamaev., 1981.: Construction, calculation and design of locomotives: Textbook. Moscow: Engineering, - 351 p.
- Poyda A.A., Khutoryansky N.M., Kononov V.E., 1986.: Locomotives. Mechanical equipment. Organization and repair: Textbook. Moscow: Transport, - 328 p.
- Airapetov E.P., Balitsky F.Y., Ivanova M.A. and others. 1982.: Vibration diagnostics of incipient gear mechanisms defects. – In book: Theses of reports of the 5 national conference on technical diagnosis. Suzdal, pp. 11-13.
- 4. Alekseev V.D., Sorokin G.E., 1987.: Cars repairment. Moscow: Transport, - 280p.
- Kireev A., 2010.: Analysis of the ultrasonic control system at making of elements and knots of rolling stock of railways. TEKA Com. Mot. i Energ. Roln. – OL PAN, 2010, X, pp. 110 - 115.
- Dobrynin S.A., Feldman M.S., Firsov G.I., 1987.: Methods of automated machinery vibration studies. -Engineering, - 224 p.
- Haushild G., 2001.: Automatic diagnostics of wheelsets with the help of ARGUS. Railways of the world. - № 12, pp. 36-42;
- Genkin, M.D., Sokolova A.G. and others. 1987.: Vibroacoustic diagnostics of machines. - Engineerinf, – 288 p.
- Basov G., Kireev A., Lysak D., 2010.: Improvement of testing operations during diagnosing tyres of railway vehicles. TEKA Com. Mot. i Energ. Roln. – OL PAN, 2010, X, pp. 12-18.
- 10. Gerasimov V.S., Skiba I.F., Kernich B.M., 1988.: Technology of carriage engineering and cars repairment. Moscow: Transport, -381p. 2

- Gridyushko V.I., Bugaev V.P., Krivoruchko N.Z., 1988.: Carload economy. Moscow: Transport, - 295p.
- Gutman B.A., 1979.: Diagnosis of mechanical systems by joint use of spectral and bispectral methods. – In book: Accuracy and reliability of mechanical systems: Intercollege scientific-technological collection. Riga Riga Polytech. Inst, pp.84-92.
- Biryukov I.V., Savoskin A.A., Burchak G.P, etc.: Under. ed. of I.V. Biryukov., 1992.: The mechanical part of traction electrical equipment: Textbook. Moscow: Transport, – 440 p.
- Weimer J., 2000.: New generation of devices detecting basking boxwood and jammed wheels. Railways of the world. - № 1. pp. 54-57.
- 15. Kolchin A.V., 1984.: Sensors for diagnostics of machines. Engineering, 120 p.
- 16. Makhortova N.V., 2006.: To the problem of identifying typical traction drive units faults based on their classification. Volodymyr Dahl East-Ukrainian National University. Lugansc, №3, pp. 78-83.
- 17. Mamshand S., Bahuguna, 2000.: Floor detection of vehicle faults. Railways of the world. -№ 7. p. 56-62;
- 18. **State Standard 16353-79** Nondesctructing control. Types and methods classification, 23p.
- Tsikin I.A., 1982.: Discrete-analog signal processing. -M.: Radio and communication, - 160 p.
- Vivdenko Y.G., Makhortova N.V., Spiryagin M.I., 2004.: Analysis of axle box and recommendations for their technical diagnostics. Problems and prospects of transport systems development: engineering, technology, economics and management: Theses of the second scientific conference. - K.: Couette, - pp. 18-19.

ХАРАКТЕРИСТИКА РАСПРОСТРАНЕННЫХ НЕИСПРАВНОСТЕЙ КОЛЕС РЕЛЬСОВЫХ ЭКИПАЖЕЙ

Надежда Махортова, Юрий Вивденко

Аннотация. Статья посвящена вопросу характеристики распространенных неисправностей колес рельсовых экипажей для выбора оптимального метода их диагностирования в процессе эксплуатации.

Ключевые слова. Колесные пары, экипажная часть, неисправности колесной пары, бандаж, профиль, гребень