PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 19 | 5 |

Tytuł artykułu

Response of bacteria to heavy metals measured as changes in FAME profiles

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effects of Cd, Ni, Cu, or Zn on the whole cell-derived fatty acid profiles of four bacterial strains isolated from heavy metal-polluted soils located in Upper Silesia was determined. Based on the fatty acid methyl ester (FAME) profiles, the strains were identified and named as Enterobacter intermedius AM15, Enterobacter intermedius MH8b, Pseudomonas putida MH1d, and Klebsiella pneumoniae AM12. The obtained results showed changes that were dependent both on tested strains and metal used. The most significant changes were observed for strains cultured in the Ni presence. In the FAME profiles of MH8b, AM15, and AM12 strains, a significant increase of cyclopropane fatty acids was observed. Moreover, exposure for Ni resulted in the appearance of a new fatty acid in the FAME profiles of AM15 and MH8b strains. In turn, Cd and Zn caused a decrease of the content of cyclopropane fatty acids as compared to control. For AM15 and AM12 strains cultured on media with heavy metals, the ratio of saturated to unsaturated fatty acids were higher than that in control. The same phenomenon was also observed for MH8b strain exposed only to the highest concentration of Ni and Cd.

Wydawca

-

Rocznik

Tom

19

Numer

5

Opis fizyczny

p.957-965,fig.,ref.

Twórcy

autor
  • Department of Microbiology, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland
  • Department of Microbiology, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland
  • Department of Microbiology, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland

Bibliografia

  • 1. BRUINS M.R., KAPIL S., OEHME F.W. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf. 45, 198, 2000.
  • 2. GADD G.M. Metals and microorganisms: a problem of definition. FEMS Microbiol Lett 100, 197, 1992.
  • 3. NIES D.H. Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51, 730, 1999.
  • 4. HASSEN A., SAIDI N., CHÉRIF M., BOUDABOUS A. Effects of heavy metals on Pseudomonas aeruginosa and Bacillus thuringiensis. Bioresour. Technol. 65, 73, 1998.
  • 5. DORESWAMY K., SHRILATHA B., RAJESHKUMAR T., MURALIDHARA H.R. Nickel induced oxidative stress in testis of Mice: Evidence of DNA damage and Genotoxic effects. J. Androl. 25, 996, 2004.
  • 6. LI Y., TRUSH M.A. Oxidation of hydroquinone by copper: Chemical mechanism and biological effects. Arch. Biochem. Biophys. 300, 346, 1993.
  • 7. ROCCHETTA I., MAZZUCA M., CONFORTI V., RUIZ L., BALZARETTI V., MOLINA M. Effect of chromium on fatty acid composition of two strains of Euglena gracilis. Environ. Pollut. 141, 353, 2006.
  • 8. LI Y., TRUSH M.A. DNA damage resulting from the oxidation of hydroquinone by copper: Role for a Cu[II]/Cu[I] redox cycle and reactive oxygen generation. Carcinogenesis 7, 1303, 1993.
  • 9. YOURTEE D.M., ELKINS L.L., NALVARTE E.L., SMITH R.E. Amplification of doxorubicin mutagenicity by cupric ion. Toxicol. Appl. Pharmacol. 116, 57, 1992.
  • 10. NIES D.H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27, 313, 2003.
  • 11. RYAN R., RYAN D., DOWLING D. Multiple metal resistance transferable phenotypes in bacteria as indicators of soil contamination with heavy metals. J. Soil Sedim. 5, 95, 2005.
  • 12. SILVER S. Bacterial resistance to toxic metal ions - a review. Gene 179, 9, 1996.
  • 13. DENICH T.J., BEAUDETTE L.A., LEE H., TREVORS J.T. Effects of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J. Microbiol. Meth. 52, 149, 2003.
  • 14. GROGAN D.W., CRONAN J.E. Cyclopropane ring formation in membrane lipids of bacteria. Microbiol. Mol. Biol. Rev. 61, 429, 1997.
  • 15. HEIPIEPER H.J., MEINHARDT F., SEGURA A. The cistrans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol. Lett. 229, 1, 2003.
  • 16. KIM I.S., LEE H., TREVORS J.T. Effects of 2,2’,5,5’-tetrachlorobiphenyl and biphenyl on cell membranes of Ralstonia eutropha H850. FEMS Microbiol. Lett. 200, 17, 2001.
  • 17. HASSEN A., JERBOUI Z., CHÉRIF M., SAIDI N., GHARBI S., BOUDABOUS A. Impact of heavy metals on the selective phenotypical markers of Pseudomonas aeruginosa. Microb. Ecol. 42, 99, 2001.
  • 18. RUSSELL N.J. Bacterial membranes: the effects of chill storage and food processing. An overview. Int. J. Food Microbiol. 79, 27, 2002.
  • 19. EINICKER-LAMAS M., SOARES M.J., OLIVERA M.M. Effects of cadmium on Euglena gracilis membrane lipids. Brazilian J. Med. Biolog. Res. 29, 941, 1996.
  • 20. AVERY S.V., HOWLETT N.G., RADICE S. Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Appl. Environ. Microbiol. 62, 3960, 1996.
  • 21. HOWLETT N.G., AVERY S.V. Relationship between cadmium sensitivity and degree of plasma membrane fatty acid unsaturation in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 48, 539, 1997.
  • 22. SASSER M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101. Microbial. ID Inc, Newark, DE, USA 1990.
  • 23. AHMAD I., HAYAT S., AHMAD A., INAM A., SAMIULLAH Effect of heavy metal on survival certain groups of indigenous soil microbial population. J. Appl. Sci. Environ. Mgt. 9, 115, 2005.
  • 24. BOWMAN J.P., SLY L.I., HAYWARD A.C. Patterns of tolerance to heavy metals among methane-utilizing bacteria. Lett. Appl. Microbiol. 10, 85, 1990.
  • 25. MROZIK A., ŁABUŻEK S., PIOTROWSKA-SEGET Z. Changes in fatty acid composition in Pseudomonas putida and Pseudomonas stutzeri during naphthalene degradation Microbiol. Res. 160, 149, 2005.
  • 26. BROWN J.L., ROSS T., MCMEEKIN T.A., NICHOLS P.D. Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int. J. Food Microbiol. 37, 163, 1997.
  • 27. PEPI M., HEIPIEPER H.J., FISCHER J., RUTA M., VOLTERRANI M., FOCARDI S.E. Membrane fatty acids adaptive profile in the simultaneous presence of arsenic and toluene in Bacillus sp. ORAs2 and Pseudomonas sp. ORAs5 strains. Extremophiles 12, 343, 2008.
  • 28. DUFOURC E.J., SMITH I.C., JARRELL H.C. Role of cyclo-propane moieties in the lipid properties of biological membranes: a 2H NMR structural and dynamical approach. Biochem. 23, 2300, 1984.
  • 29. DUNKLEY E.A., GUFFANTI A.A., CLEJAN S., KRULWICH T.A. Facultative alkaliphiles lack fatty acid desaturase activity and lose the ability to grow at near-neutral pH when supplemented with an unsaturated fatty acid. J. Bacteriol. 173, 1331, 1991.
  • 30. LAW J.H. Biosynthesis of cyclopropane rings. Acc. Chem. Res. 4, 199, 1971.
  • 31. FOZO E.M., KAJFASZ J.K., QUIVEY R.G. Jr. Low pHinduced membrane fatty acid alternations in oral bacteria. FEMS Microbiol. Lett. 238, 291, 2004.
  • 32. PARASZKIEWICZ K., BERNAT P., DŁUGOŃSKI J. Effect of nickel, copper, and zinc on emulsifier production and saturation of cellular fatty acids in the filamentous fungus Curvularia lunata. Int. Biodeterior. Biodegrad. 63, 100, 2009.
  • 33. ČERTIK M., BREIEROVA E., JURSIKOVA P. Effect of cadmium on lipid composition of Aureobasidium pollulans grown with added extracellular polysaccharides. Int. Biodeterior. Biodegrad. 55, 195, 2005.
  • 34. GARCÍA J.J., MARTÍNEZ-BALLARIÍN E., MILLÁNPLANO S., ALLUÉ J.L., ALBENDEA C., FUENTES L., ESCANERO J.F. Effects of trace elements on membrane fluidity. J. Trace Elem. Med. Biol. 19, 19, 2005.
  • 35. GAJEWSKA E., SKŁODOWSKA M. Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. BioMetals 20, 27, 2007.
  • 36. MANNISTO M.K., PUHAKKA J.A. Temperature- and growth-phase-regulated changes in lipid fatty acid structures of psychrotolerant groundwater Proteobacteria. Arch. Microbiol. 177, 41, 2001.
  • 37. RUSSELL N.J. Psychrofilic bacteria – molecular adaptaion of membrane lipids. Comp. Biochem. Physiol. 118A, 489, 1997.
  • 38. GUSCHINA I.A., HARWOOD J.L. Lead and copper effects on lipid metabolism in cultured lichen photobionts with different phosphorus status. Phytochem. 67, 1731, 2006.
  • 39. GAETKE L.M., CHOW C.K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189, 147, 2003.
  • 40. STOHS S.J., BAGCHI D. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 18, 321, 1995.
  • 41. KHAN A.G. Role of soil microbes in the rhizosphere of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Elem. Med. Biol. 18, 355, 2005.
  • 42. RAJKUMAR M., FREITAG H. Influence of metal resistant- plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71, 834, 2008.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b21341b7-ddc6-47da-a50a-3b18f9c02bbb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.