PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 59 | 4 |

Tytuł artykułu

Biofilm forming multi drug resistant Staphylococcus spp. among patients with conjunctivitis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Biofilm forming multidrug resistant Staphylococcus spp. are major reservoirs for transmission of ophthalmic infections. They were isolated from ocular patients suffering from conjunctivitis. In this study we analyzed biofilm forming ability, antibiotic resistance profile of the Staphylococcus spp. isolated from clinical ocular patients, and their phylogenetic relationship with other community MRSA. Sixty Staphylococcus spp. strains isolated from clinical subjects were evaluated for their ability to form biofilm and express biofilm encoding ica gene. Among them 93% were slime producers and 87% were slime positive. Staphylococcus aureus and S. epidermidis were dominant strains among the isolates obtained from ocular patients. The strains also exhibited a differential biofilm formation quantitatively. Antibiotic susceptibility of the strains tested with Penicillin G, Ciprofloxacin, Ofloxacin, Methicillin, Amikacin, and Gentamicin indicated that they were resistant to more than one antibiotic. The amplicon of ica gene of strong biofilm producing S. aureus strains, obtained by polymerase chain reaction, was sequenced and their close genetic relationship with community acquired MRSA was analyzed based on phylogenetic tree. Our results indicate that they are genetically close to other community acquired MRSA.

Wydawca

-

Rocznik

Tom

59

Numer

4

Opis fizyczny

p.233-239,fig.,ref.

Twórcy

autor
  • Department of Botany and Microbiology, College of Science, King Saud University, Saudi Arabia
autor
  • P.G. and Research Department of Microbiology, K.S.R. College of Arts and Science,Tamilnadu, India
autor
  • P.G. and Research Department of Microbiology, K.S.R. College of Arts and Science,Tamilnadu, India
  • Department of Botany and Microbiology, College of Science, King Saud University, Saudi Arabia
  • Department of Botany and Microbiology, College of Science, King Saud University, Saudi Arabia

Bibliografia

  • Ammendolia M.G., R. Di Rosa, L. Montanaro, C.R Aricola and L. Baldasarri. 1999. Slime production and expression of the slime associated antigen by Staphylococcal clinical isolates. J. Clin. Microbiol. 37: 3235-3238.
  • Arciola C.R., L. Baldassarri and L. Montanaro. 2001. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J. Clin. Microbiol, 39: 2151-2156.
  • Armstrong R.A. 2000. The microbiology of the eye. Ophthalmic. Physiol. Opt. 20: 429-41.
  • Arslan S. and K. Ozkardes. 2007. Slime production and antibiotic susceptibility in staphylococci isolated from clinical samples. Mem. Inst. Oswaldo Cruz. 102: 29-33.
  • Asbell P.A., D.F Sahm, Mary Shaw, D.C. Draghi and N.P. Brown. 2008. Increasing prevalence of methicillin resistance in serious ocular infections caused by Staphylococcus aureus in the United States: 2000 to 2005. J. Cataract Refract. Surg. 34: 814-818.
  • Carpentier B. and O. Cerf. 1993. Biofilm and their consequences: with particular reference to hygiene in the food industry. J. Appl. Bacteriol. 75: 499-511.
  • Christensen G.D., W.A Simpson, A.L. Bisno and E.H. Bcachey. 1982. Adherence of slime producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun. 37: 318-326.
  • Clinical and Laboratory Standards Institute. 2006. Performance standards for antimicrobial disk susceptibility tests; Approved Standard, M2-M9, 9th Edn, Wayne, PA, USA.
  • Clinical and Laboratory Standards Institute. 2006. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard, M7-A7.7th Edn Wayne, PA, USA.
  • Costerton J.W, S. Philip, S. Stewart and E.P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318-1322.
  • Costerton J.W and H.M. Lappin-Scott. 1999. Introduction to microbial biofilms, pp. 1-11. In: Lappin-Scott H.M. and J.W. Costerton (eds), lst Edn. Microbial biofilms. Cambridge University Press, New York, N.Y.
  • Cramton S.E., C. Gerke, N.F. Scnell, WW. Nichols and F. Götz. 1999. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect. Immun. 67: 5427-5433.
  • Cucarella C, C. Solono and J. Valle. 2001. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J. Bacteriol. 183: 2888-2896.
  • Deighthon M., R. Borland and J.A. Capstick. 1996. Virulence of Staphylococcus epidermidis in a mouse model: significance of extracellular slime. Epidemiol. Infect. 117: 267-80.
  • Donnenfeld E.D., T. Kim., E.J. Holland et al. 2005. ASCRS White Paper: Management of infectious keratitis following laser in situ keratomileusis. J. Cataract Refract. Surg. 31: 2008-11.
  • Elder M.J., F. Stapleton, E. Evas and J.K.G. Dart. 1995. Biofilm-related infections in ophthalmology. Eye 9: 102-109.
  • Felsenstein J. 1985. Confidence limits on phytogenies: An approach using the bootstrap. Evolution 39: 783-791.
  • Fishman N. 2006. Antimicrobial stewardship. Am. J. Med. 119: 53-61.
  • Freeman D.J., F.R. Falkiner and C.T. Keane. 1989. New method for detecting slime production by coagulase negative Staphylococci. J. Clin. Pathol. 42: 872-874.
  • Gelosia A., L. Baldassarri, M. Deighton and T. van Nguyen. 2001. Phenotypic and genotypic markers of Staphylococcus epidermidis virulence. Clin. Microbiol. Infect. 7: 193-9.
  • Gerke C., A. Kraft, R. Sussmuth, O. Schweitzer and F. Götz. 1998. Characterisation of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J. Biol. Chem. 273: 18586-18593.
  • Goldstein M.H., R.P. Kowalski and Y.J. Gordon. 1999. Emerging fluoroquinolones resistance in bacterial keratitis. Ophthalmology 106: 1313-1318.
  • Gristina A., C.D. Hobgood and L.X. Webb. 1987. Adhesive colonization of biomaterials and antibiotic resistance. Biomaterials 8: 423-426.
  • Hoyle B.O., J. Alcantarz and J.W. Costerton. 1992. Pseudomonas aeruginosa biofilm as diffusion barrier to pipperaillin. Antimicrob. Agents Chemother. 36: 2054-2056.
  • Hwang D.G. 2004. Fluoroquinolone resistance in ophthalmology and the potential role for newer ophthalmic fluoroquinolones Surv. Ophthalmol. 49: S79-S83.
  • Kim D.H., W.J. Stark, T.P. O'Brien and J.D. Dick. 2005. Aqueous penetration and biological activity of moxifloxacin 0.5% ophthalmic solution and gatifloxacin 0.3% solution in cataract surgery patients. Ophthalmology 112: 1992-1996.
  • Kloos W.E. and T.L. Bannerman. 1999. Staphylococcus and Micrococcus, pp. 262-282. In: Murray R.P., E.J. Baron, M.A. Pfaller, M.C. Tenover and R.H. Yolken (eds.), Manual of Clinical Microbiology, 7th ed. American society of Microbiology, Washington, D.C.
  • Knauf H.P., R. Sivany, P.M. Southern et al. 1996. Susceptibility of corneal and conjunctival pathogens to ciprofloxacin. Cornea 15: 66-71.
  • Levy J., T. Oshry., R. Rabinowitz and T. Lifshitz. 2005. Acinetobacter corneal graft ulcer and endophthalmitis: report of two cases. Can. J. Opthalmol. 40: 79-82.
  • Liakopoulos V., E. Petinaki, G. Efthimiadi, D. Klapsa, M. Giannopoulou, S. Dovas, T. Eleftheriadis, P.R. Mertens and I. Stefanidis. 2008. Clonal relatedness of methicillin-resistant coagulase-negative staphylococci in the haemodialysis unit of a single university centre in Greece. Nephrol. Dial. Transplant. 23: 2599-2603.
  • Mack D., M. Haeder, N. Siemssen and R. Laufs. 1996. Association of biofilm production of coagulase-negative staphylococci with expression of a specific polysaccharide intercellular adhesin. J. Infect. Dis. 174: 881-884.
  • Marangon F.B., D. Miller, M.S. Muallem, A.C. Romano and E.C. Alfonso. 2004. Ciprofloxacin and levofloxacin resistance among methicillin sensitive Staphylococcus aureus isolates from keratitis and conjunctivitis. Am. J. Ophthalmol. 137: 453-458.
  • Mathur T., S. Singhal, S. Khan, D.J. Upadhyay, T. Fatma and A. Rattan. 2006. Detection of biofilm formation among the clinical isolates of staphylococci: An evaluation of three different screening methods. Ind. J. Med. Microbiol. 24: 25-29.
  • McDonald M.B., E.E. Protzko, L.S. Brunner, T.W. Morris, W. Haas, M.R. Paterno, T.L. Comstock and D.W. Usner. 2009. Efficacy and safety of besifloxacin ophthalmic suspension 0.6% compared with moxifloxacin ophthalmic solution 0.5% for treating bacterial conjunctivitis. Ophthalmology 116: 1615-1623.
  • Rutar T., H.F. Chambers, J.B. Crawford, F. Perdreau-Remington, O.M. Zwick, M. Karr, J.J. Diehn and K.P. Cockerham. 2006. Ophthalmic manifestations of infections caused by the USA300 clone of community-associated methicillin-resis-tant Staphylococcus aureus. Ophthalmology 113: 1455-1462.
  • Saitou N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  • Salmenlinna S., O. Lyytikainen and J. Vuopio-Varkila. 2002. Community acquired methicillin resistant Staphylococcus aureus, Finland. Emerg. Infect. Dis. 8: 602-7.
  • Sambrook J., E.F. Fritsch and T. Maniatis. 1989. Molecular Cloning; a Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  • Sankaridurg P.R., M.D.P. Willcox, S. Sharma, V. Gopinathan, D. Janakiraman, S. Hickson, N. Vuppala, D.F. Sweeney, G.N. Rao and B.A. Hidden. 1996. Haemophilus influenzae adherent to contact lenses associated with production of acute ocular inflammation. J. Clin. Microbiol. 34: 2426-2431.
  • Schlech B.A. and J. Blondeau. 2005. Future of ophthalmic anti-infective therapy and the role of moxifloxcin ophthalmic solution 0.5% (VIGAMOX®). Surv. Ophthalmol. 50: S64-S67.
  • Scott E., S. Duty and M. Callahan. 2008. A pilot study to isolate Staphylococcus aureus and methicillin-resistant S. aureus from environmental surfaces in the Home. Am. J. Infect. Control. 36: 458-60.
  • Stevens N.T., M. Tharmabala, T. Dillane, C.M. Greene, J.P. O'Gara and H. Humphreys. 2008. Biofilm and the role of the ica operon and aap in Staphylococcus epidermidis isolates causing neurosurgical meningitis. Clin. Microbiol. Infect. 14: 719-722.
  • Takashi Suzuki, Yoshiaki Kawamura., Toshihiko Uno., Yuichi Ohashi and Takayuki Ezaki. 2005. Prevalence of Staphylococcus epidermidis strains with biofilm-forming ability in isolates from conjunctiva and facial skin. Am. J. Ophthalmol. 140: 844-850.
  • Tamura K., M. Nei and S. Kumar. 2004. Prospects for inferring very large phylogenies by using the neighbour joining method. Proc. Natl. Acad. Sci. (USA) 101: 11030-11035.
  • Tamura K., J. Dudley, M. Nei and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.
  • Tristan A, L. Ying, M. Bes, Etienne J., Vaneneseh and G. Linn. 2003. Use of Multiplex PCR to identify Staphylococcus aureus adhesion involved in human hematogenous infection. J. Clin. Microbiol. 41: 4465-4467.
  • Tuft S.J., M. Ramakrishnan, D.V. Seal, D.M. Kemeny and R.J. Buckley. 1992. Role of Staphylococcus aureus in chronic allergic conjunctivitis. Ophthalmology 99: 180-184.
  • Vasudevan P., M.K.M. Nair, T. Annamalai and K.S. Venkilanarayanan. 2003. Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet. Microbiol. 92: 179-185
  • Wilbur W.J. and D.J. Lipman. 1983. Rapid similarity searches of nucleic acid and protein data banks. Proc. Natl. Acad. Sci. USA 80(3): 726-730.
  • Williams I., F. Paul, D. Lloyd, R. Jepras, I. Critchely, M. Newman, J. Warrack, T. Giokarini, A.J. Hayes, P.F. Randerson and W.A. Venables. 1999. Flow cytometry and other techniques show that Staphylococcus aureus undergoes significant physiological changes in the early stages of surface-attached culture. Microbiol. 145: 1325-1333.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b06d4db4-d14e-4212-854d-703d640d7be9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.