PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 07 |

Tytuł artykułu

Salicylic acid involved in chilling-induced accumulation of calycosin-7-O-Beta-d-glucoside in Astragalus membranaceus adventitious roots

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Calycosin and calycosin-7-O-β-D-glucoside (CG) are major isoflavonoids in Astragalus membranaceus and have multiple beneficial activities. Adventitious roots (ARs) are becoming attractive resources to obtain biologically active compounds. Salicylic acid (SA) is an important endogenous phytohormone, which is involved in the regulation of biotic and abiotic stresses. However, little is known about the potential role of SA on isoflavonoid accumulations under chilling stress. In the present study, calycosin was found to accumulate mostly in its glucosyl conjugate (CG) form in A. membranaceus ARs (AMARs). Compared to control conditions (25 °C), chilling (5 °C) induced the accumulation of CG, which was confirmed by increased expression levels of gene-encoding enzymes in the CG biosynthetic pathway. Furthermore, chilling triggered the accumulation of SA prior to CG accumulation. In addition, the inhibition of SA biosynthesis with paclobutrazol (PAC) in chilling-exposed AMARs suppressed the accumulation of CG and gene expressions, while exogenous addition of SA to PAC-treated AMARs restored CG content and gene expressions. These results indicated that in AMARs, SA involved in chilling-induced CG accumulation by regulating the expression levels of genes in the CG biosynthetic pathway.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

41

Numer

07

Opis fizyczny

Article 120 [9p.], fig.,ref.

Twórcy

autor
  • Key Laboratory of Nature Resource of Changbai Mountain and Functional Molecular, Yanbian University, Ministry of Education, Park Road 977, Yanji 133002, Jilin, China
autor
  • Jilin Academy of Agricultural Sciences, Ecological Street 1363, Changchun 130033, Jilin, China
autor
  • Key Laboratory of Nature Resource of Changbai Mountain and Functional Molecular, Yanbian University, Ministry of Education, Park Road 977, Yanji 133002, Jilin, China
autor
  • Key Laboratory of Nature Resource of Changbai Mountain and Functional Molecular, Yanbian University, Ministry of Education, Park Road 977, Yanji 133002, Jilin, China
autor
  • Key Laboratory of Nature Resource of Changbai Mountain and Functional Molecular, Yanbian University, Ministry of Education, Park Road 977, Yanji 133002, Jilin, China
autor
  • Key Laboratory of Nature Resource of Changbai Mountain and Functional Molecular, Yanbian University, Ministry of Education, Park Road 977, Yanji 133002, Jilin, China
autor
  • Key Laboratory of Nature Resource of Changbai Mountain and Functional Molecular, Yanbian University, Ministry of Education, Park Road 977, Yanji 133002, Jilin, China

Bibliografia

  • Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16(11):3098–3109
  • Bandurska H, Cieślak M (2013) The interactive effect of water deficit and UV-B radiation on salicylic acid accumulation in barley roots and leaves. Environ Exp Bot 94(6):9–18
  • Chen Z, Zheng Z, Huang J, Lai Z, Fan B (2009) Biosynthesis of salicylic acid in plants. Plant Signal Behav 4(6):493–496
  • Cheng F, Lu J, Gao M, Shi K, Kong Q, Huang Y, Bie Z (2016) Redox signaling and CBF-responsive pathway are involved in salicylic acid-improved photosynthesis and growth under chilling stress in watermelon. Front Plant Sci 7:1519
  • Chinese Pharmacopoeia Commission (2015) Huangqi. Pharmacopoeia of the People’s Republic of China, part I (Chinese). China Medical Science Press, Beijing, pp 302–303
  • Dong CJ, Li L, Shang QM, Liu XY, Zhang ZG (2014) Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings. Planta 240(4):687–700
  • Durango D, Pulgarin N, Echeverri F, Escobar G, Quiñones W (2013) Effect of salicylic acid and structurally related compounds in the accumulation of phytoalexins in cotyledons of common bean (Phaseolus vulgaris L.) cultivars. Molecules 18(9):10609–10628
  • Fu J, Wang Z, Huang L, Zheng S, Wang D, Chen S, Zhang H, Yang S (2014) Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phytother Res 28(9):1275–1283
  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50(1):151–158
  • Gondor OK, Janda T, Soós V, Pál M, Majláth I, Adak MK, Balázs E, Szalai G (2016) Salicylic acid induction of flavonoid biosynthesis pathways in wheat varies by treatment. Front Plant Sci 7:1447
  • Guo C, Tong L, Xi M, Yang H, Dong H, Wen A (2012) Neuroprotective effect of calycosin on cerebral ischemia and reperfusion injury in rats. J Ethnopharmacol 144(3):768–774
  • Janas KM, Cvikrová M, Pałagiewicz A, Szafranska K, Posmyk MM (2002) Constitutive elevated accumulation of phenylpropanoids in soybean roots at low temperature. Plant Sci 163(2):369–373
  • Janská A, Maršík P, Zelenková S, Ovesná J (2010) Cold stress and acclimation-what is important for metabolic adjustment? Plant Biol 12(3):395–405
  • Jiang YH, Sun W, Li W, Hu HZ, Zhou L, Jiang HH, Xu JX (2015) Calycosin-7-O-β-D-glucoside promotes oxidative stress-induced cytoskeleton reorganization through integrin-linked kinase signaling pathway in vascular endothelial cells. BMC Complement Altern Med 15:135
  • Jiang M, Liu J, Quan X, Quan L, Wu S (2016) Different chilling stresses stimulated the accumulation of different types of ginsenosides in Panax ginseng cells. Acta Physiol Plant 38(8):1–8
  • Jiao J, Gai QY, Wang W, Luo M, Gu CB, Fu YJ, Ma W (2015) Ultraviolet radiation-elicited enhancement of isoflavonoid accumulation, biosynthetic gene expression, and antioxidant activity in Astragalus membranaceus hairy root cultures. J Agric Food Chem 63(37):8216–8224
  • Jørgensen K, Rasmussen AV, Morant M, Nielsen AH, Bjarnholt N, Zagrobelny M, Bak S, Møller BL (2005) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr Opin Plant Biol 8(3):280–291
  • Jung W, Yu O, Lau SM, O’Keefe DP, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 18(2):208–212
  • Karwasara VS, Dixit VK (2012) Culture medium optimization for improved puerarin production by cell suspension cultures of Pueraria tuberosa (Roxb. ex Willd.) DC. In Vitro Cell Dev Biol Plant 48(2):189–199
  • Kim GS, Lee DY, Lee SE, Noh HJ, Choi JH, Park CG, Choi SI, Hong SJ, Kim SY (2013) Evaluation on extraction conditions and HPLC analysis method for bioactive compounds of Astragali Radix. Korean J Med Crop Sci 21(6):486–492
  • Kokotkiewicz A, Luczkiewicz M, Kowalski W, Badura A, Piekus N, Bucinski A (2013) Isoflavone production in Cyclopia subternata Vogel (honeybush) suspension cultures grown in shake flasks and stirred-tank bioreactor. Appl Microbiol Biotechnol 97(19):8467–8477
  • Kokotkiewicz A, Bucinski A, Luczkiewicz M (2014) Light and temperature conditions affect bioflavonoid accumulation in callus cultures of Cyclopia subternata Vogel (honeybush). Plant Cell Tissue Organ Cult 118(3):589–593
  • León J, Shulaev V, Yalpani N, Lawton MA, Raskin I (1995) Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis. Proc Natl Acad Sci USA 92(22):10413–10417
  • Liu CJ, Huhman D, Sumner LW, Dixon RA (2003) Regiospecific hydroxylation of isoflavones by cytochrome P450 81E enzymes from Medicago truncatula. Plant J 36(4):471–484
  • Liu J, Chen HB, Guo BL, Zhao ZZ, Liang ZT, Yi T (2011) Study of the relationship between genetics and geography in determining the quality of Astragali Radix. Biol Pharm Bull 34(9):1404–1412
  • Ma XQ, Shi Q, Duan JA, Dong TT, Tsim KW (2002) Chemical analysis of Radix Astragali (Huangqi) in China: a comparison with its adulterants and seasonal variations. J Agric Food Chem 50(17):4861–4866
  • Ma CH, Wang RR, Tian RR, Ye G, Fan MS, Zheng YT, Huang CG (2009) Calycosin 7-O-β-D-glucopyranoside, an anti-HIV agent from the roots of Astragalus membranaceus var. mongholicus. Chem Nat Compd 45(2):282–285
  • Meng C, Zhang S, Deng YS, Wang GD, Kong FY (2015) Overexpression of a tomato flavanone 3-hydroxylase-like protein gene improves chilling tolerance in tobacco. Plant Physiol Biochem 96:388–400
  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497
  • Murthy HN, Dandin VS, Paek KY (2014) Tools for biotechnological production of useful phytochemicals from adventitious root cultures. Phytochem Rev 15(1):1–17
  • Pan H, Fang C, Zhou T, Wang Q, Chen J (2007) Accumulation of calycosin and its 7-O-β-D-glucoside and related gene expression in seedlings of Astragalus membranaceus Bge. var. mongholicus (Bge) Hsiao induced by low temperature stress. Plant Cell Rep 26(7):1111–1120
  • Pan H, Li X, Cheng X, Wang X, Fang C, Zhou T, Chen J (2015) Evidence of calycosin-7-O-β-D-glucoside’s role as a major antioxidant molecule of Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao plants under freezing stress. Environ Exp Bot 109:1–11
  • Park YJ, Thwe AA, Li X, Kim YJ, Kim JK, Arasu MV, Al-Dhabi NA, Park SU (2015) Triterpene and flavonoid biosynthesis and metabolic profiling of hairy roots, adventitious roots, and seedling roots of Astragalus membranaceus. J Agric Food Chem 63(40):8862–8869
  • Posmyk MM, Bailly C, Szafrańska K, Janas KM, Corbineau F (2005) Antioxidant enzymes and isoflavonoids in chilled soybean (Glycine max (L.) Merr.) seedlings. J Plant Physiol 162(4):403–412
  • Ruelland E, Vaultier MN, Zachowski A, Hurry V (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150
  • Shine MB, Yang JW, El-Habbak M, Nagyabhyru P, Fu DQ, Navarre D, Ghabrial S, Kachroo P, Kachroo A (2016) Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytol 212(3):627–636
  • Thwe AA, Mai NTT, Li X, Kim Y, Kim YB, Uddin MR, Kim YS, Bae H, Kim HH, Lee MY, Park SU (2012) Production of astragaloside and flavones from adventitious root cultures of Astragalus membranaceus var. mongholicus. Plant Omics 5(5):466–470
  • Toda K, Takahashi R, Iwashina T, Hajika M (2011) Difference in chilling-induced flavonoid profiles, antioxidant activity and chilling tolerance between soybean near-isogenic lines for the pubescence color gene. J Plant Res 124(1):173–182
  • Wu T, Annie Bligh SW, Gu LH, Wang ZT, Liu HP, Cheng XM, Branford-White CJ, Hu ZB (2005) Simultaneous determination of six isoflavonoids in commercial Radix Astragali by HPLC-UV. Fitoterapia 76(2):157–165
  • Wu XL, Wang YY, Cheng J, Zhao YY (2006) Calcium channel blocking activity of calycosin, a major active component of Astragali Radix, on rat aorta. Acta Pharmacol Sin 27(8):1007–1012
  • Wu SQ, Lian ML, Gao R, Park SY, Piao XC (2011) Bioreactor application on adventitious root culture of Astragalus membranaceus. In Vitro Cell Dev Biol Plant 47:719–724
  • Yu D, Duan Y, Bao Y, Wei C, An L (2005) Isoflavonoids from Astragalus mongholicus protect PC12 cells from toxicity induced by L-glutamate. J Ethnopharmacol 98:89–94
  • Zhang J, Xie X, Li C, Fu P (2009) Systematic review of the renal protective effect of Astragalus membranaceus (root) on diabetic nephropathy in animal models. J Ethnopharmacol 126(2):189–196
  • Zhao J, Dixon RA (2010) The ‘ins’ and ‘outs’ of flavonoid transport. Trends Plant Sci 15(2):72–80
  • Zhao J, Li G, Yi GX, Wang BM, Deng AX, Nan TG, Li ZH, Li QX (2006) Comparison between conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules. Anal Chim Acta 571(1):79–85
  • Zhu JJ, Li YR, Liao JX (2013) Involvement of anthocyanins in the resistance to chilling-induced oxidative stress in Saccharum officinarum L. leaves. Plant Physiol Bioc 73:427–433

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-b05b329b-4be6-46fc-a39e-486a5035d4e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.