PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 49 | 1 |

Tytuł artykułu

Statistical measures of uncertainty for branches in phylogenic trees inferred from molecular sequences by using model-based methods

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In recent years, the emphasis of theoretical work on phylogenetic inference has shifted from the development of new tree inference methods to the development of methods to measure the statistical support for the topologies. This paper reviews 3 approaches to assign support values to branches in trees obtained in the analysis of molecular sequences: the bootstrap, the Bayesian posterior probabilities for clades, and the interior branch tests. In some circumstances, these methods give different answers. It should not be surprising: their assumptions are different. Thus the interior branch tests assume that a given topology is true and only consider if a particular branch length is longer than zero. If a tree is incorrect, a wrong branch (a low bootstrap or Bayesian support may be an indication) may have a non-zero length. If the substitution model is oversimplified, the length of a branch may be overestimated, and the Bayesian support for the branch may be inflated. The bootstrap, on the other hand, approximates the variance of the data under the real model of sequence evolution, because it involves direct resampling from this data. Thus the discrepancy between the Bayesian support and the bootstrap support may signal model inaccuracy. In practical application, use of all 3 methods is recommended, and if discrepancies are observed, then a careful analysis of their potential origins should be made.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

49

Numer

1

Opis fizyczny

p.49-67,fig.,ref.

Twórcy

autor
  • Department of Marine Genetics and Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstancow Warszawy 55, 81-712 Sopot, Poland

Bibliografia

  • Alfaro ME, Zoller S, Lutzoni F, 2003. Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol Biol Evol 20: 255-266.
  • Alfaro ME, Holder MT, 2006. The posterior and the prior in Bayesian phylogenetics Annu Rev Ecol Evol Syst 37:19-42.
  • Anisimova M, Gascuel O, 2006. Approximate likelihood-ratio test for branches: a fast, accurate and powerful alternative. Syst Biol 55: 539-552.
  • Bakke E, von Haeseler A, 1999. Distance measures in terms of substitution process. Theor Popul Biol 55: 166-175.
  • Bergsten J, 2005. A review of long-branch attraction. Cladistics 21: 163-193.
  • Brandley MC, Leache AD, Warren DL, McGuire JA, 2006. Are unequal clade priors problematic for Bayesian phylogenetics? Syst Biol 55: 138-146.
  • Berry V, Gascuel O, 1996. On the interpretation of bootstrap trees: appropriate threshold of clade selection and induced gain. Mol Biol Evol 13: 999-1011.
  • Buckley TR, 2002. Model misspecification and probabilistic tests of topology: Evidence from empirical data sets. Syst Biol 51: 509-523.
  • Buckley TR, Simon C, Chambers GK, 2001. Exploring among-site rate variation models in a maximum likelihood framework using empirical data: effects of model assumptions on estimates of topology, branch lengths, and bootstrap support. Syst Biol 50: 67-86.
  • Buckley TR, Cunningham CW, 2002. The effects of nucleotide substitution model assumptions on estimates of nonparametric bootstrap support. Mol Biol Evol 19: 394-405.
  • Buckley TR, Arensburger P, Simon C, Chambers GK, 2002. Combined data, Bayesian phylogenetics, and the origin of the New Zealand cicada genera. Syst Biol 51: 4-18.
  • Bulmer M, 1991. Use of the method of generalized least squares in reconstructing phytogenies from sequence data. Mol Biol Evol 8: 868-883.
  • Cao Y, Adachi J, Hasegawa M, 1998. Comment on the quartet puzzling method for finding maximum-likelihood tree topologies. Mol Biol Evol 15: 87-89.
  • Collin R, 2003. Phylogenese relationships among calyptraeid gastropods and their implications for the biogeography of marine speciation. Syst Biol 52: 618-640.
  • Cummings MP, Handley SA, Myers DS, Reed DL, Rokas A, Winka K, 2003. Comparing bootstrap and posterior probability values in the four-taxon case. Syst Biol 52: 477-487.
  • Czarna A, Sanjuan R, Gonzalez-Candelas F, Wróbel B, 2006. Topology testing of phylogenies using least squares methods. BMC Evol Biol 6: 105.
  • DeBry RW, 2003. Identifying conflicting signal in a multigene analysis reveals a highly resolved tree: The phylogeny of Rodentia. Syst Biol 52: 604-617.
  • Desper R, Gascuel O, 2004. Theoretical foundation of the balanced minimum evolution method of phylogenetic inference and its relationship to weighted least-squares tree fitting. Mol Biol Evol 21: 587-598.
  • Dopazo J, 1994. Estimating errors and confidence intervals for branch lengths in phylogenetic trees by a bootstrap approach. J Mol Evol 38: 300-304.
  • Dopazo H, Dopazo J, 2005. Genome scale evidence for the nematode-arthropod clade. Genome Biol 6: R41.
  • Dopazo H, Santoyo J, Dopazo J, 2004. Phylogenomics and the number of characters required for obtaining an accurate phylogeny of eukaryote model species. Bioinformatics 20: I116-I121.
  • Douady CJ, Delsuc F, Boucher Y, Doolittle WF, Douzery EJP, 2003. Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol Biol Evol 20: 248-254.
  • Durbin R, Eddy S, Krogh A, Mitchison G, 1998. Biological sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge, UK: Cambridge Univ Press: 212.
  • Edwards AWF, Cavalli-Sforza LL, 1963. The reconstruction of evolution. Ann Hum Gen 27: 105-106.
  • Edwards SV, Liu L, Pearl DK, 2007. High resolution species trees without concatenation. Proc Natl Acad Sci USA 104: 5936-5941.
  • Efron B, 1979. Bootstrap methods: another look at the jackknife. Ann Statist 7: 1-26.
  • Efron B, 2003. Second thoughts on the bootstrap. Stat Sci 18: 135-140.
  • Efron B, Halloran E, Holmes S, 1996. Bootstrap confidence levels for phylogenetic trees. Proc Natl Acad Sci USA 93: 13429-13434.
  • Erixon P, Svennblad B, Britton T, Oxelman B, 2003. Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Syst Biol 52: 665-673.
  • Farris JS, Albert VA, Kallersjo M, Lipscomb D, Kluge AG, 1996. Parsimony jackknifing outperforms bootstrapping. Cladistics 12: 99-124.
  • Felsenstein J, 1978. A likelihood approach to character weighting and what it tells us about parsimony and compatibility. Biol J Linn Soc 16: 183-196.
  • Felsenstein J, 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
  • Felsenstein J, 1988. Phylogenies from molecular sequences: inference and reliability. Ann Rev Genet 22: 521-565.
  • Felsenstein J, 2000. PHYLIP (Phylogeny Inference Package). Distributed by the author, University of Washington, Seattle.
  • Felsenstein J, 2004. Inferring phylogenies. Sunderland, MA: Sinauer Associates.
  • Felsenstein J, Kishino H, 1993. Is there something wrong with the bootstrap on phylogenies? A reply to Hillis and Bull. Syst Biol 42: 193-200.
  • Gascuel O, 1997a. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14: 685-695.
  • Gascuel O, 1997b. Concerning the NJ algorithm and its unweighted version, UNJ. In: Mirkin B, McMorris F, Roberts F, Rhetsky A, eds. Mathematical hierarchies and biology. Providence, RI: American Mathematical Society: 149-170.
  • Gascuel O, Steel M, 2006. Neighbor joining revealed. Mol Biol Evol 23: 1997-2000.
  • Gaut BS, Lewis PO, 1995. Success of maximum likelihood phylogeny inference in the four-taxon case. Mol Biol Evol 12: 152-162.
  • Goldman N, Anderson JP, Rodrigo AG, 2000. Likelihood-based tests of topologies in phylogenetics. Syst Biol 49: 652-670.
  • Goldman N, Whelan S, 2000. Statistical tests of gamma distributed rate heterogeneity in models of sequence evolution in phylogenetics. Mol Biol Evol 17: 975-978.
  • Helm-Bychowski K, Crafcraft J, 1993. Recovering phylogenetic signal from DNA sequences: relationships within the corvine assemblage (class Aves) as inferred from complete sequences of the mitochondrial DNA cytochrome-b gene. Mol Biol Evol 10: 1196-1214.
  • Hendy MD, Penny D, 1989. A framework for the quantitative study of evolutionary trees. Syst Zool 38: 297-309.
  • Hillis DM, Bull JJ, 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42: 182-192.
  • Holder M, Lewis PO, 2003. Phylogeny estimation: traditional and Bayesian approaches. Nature Rev Genet 4: 275-284.
  • Holmes S, 2003a. Bootstrapping phylogenetic trees: theory and methods. Stat Sci 18: 241-255.
  • Holmes S, 2003b. Statistics for phylogenetic trees. Theor Popul Biol 63: 17-32.
  • Hovenkamp P, 2006. Can taxon-sampling effects be minimized by using branch supports? Cladistics 22: 264-275.
  • Huelsenbeck JP, Hillis DM, Nielsen R, 1996. A likelihood-ratio test of monophyly. Syst Biol 45: 546-558.
  • Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP, 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310-2314.
  • Huelsenbeck JP, Larget B, Miller RE, Ronquist F, 2002. Potential applications and pitfalls of Bayesian inference of phylogeny. Syst Biol 51: 673-688.
  • Huelsenbeck JP, Rannala B, 2004. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Syst Biol 53: 904-913.
  • Huelsenbeck JP, Ronquist, FR, 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17: 754-755.
  • Huelsenbeck JP, Ronquist, FR, 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.
  • Huson DH, Bryant D, 2006. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23: 254-267.
  • Jordan S, Simon C, Polhemus D, 2003. Molecular systematics and adaptive radiation of Hawaii's endemic damselfly genus Megalagrion. Syst Biol 52: 89-109.
  • Karol KG, McCourt RM, Cimino MT, Delwiche CF, 2001. The closest living relative of land plants. Science 294: 2351-2353.
  • Kauff F, Lutzoni F, 2002. Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Mol Phylogenet Evol 25: 138-156.
  • Kishino H, Hasegawa M, 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29: 170-179.
  • Kolaczkowski B, Thornton JW, 2006. Is there a star tree paradox? Mol Biol Evol 23: 1819-1823.
  • Koepfli K-P, Wayne RK, 2003. Type I STS markers of more informative than cytochrome b in phylogenetic reconstruction of the Mustelidae (Mammalia: Carnivora). Syst Biol 52: 571-593.
  • Krajewski C, Dickerman AW, 1990. Bootstrap analysis of phylogenetic trees derived from DNA hybridization distances. Syst Zool 39: 383-390.
  • Künsch H, 1989. The jackknife and the bootstrap for general stationary observations. Ann Statist 17: 1217-1241.
  • Lanyon SM, 1985. Detecting internal inconsistencies in distance data. Syst Zool 34, 397-403.
  • Lapointe F-J, Kirsch JAW, Bleiweiss R, 1994. Jackknifing of weighted trees: validation of phylogenies reconstructed from distance matrices. Mol Phylogenet Evol 3: 256-267.
  • Larget B, Simon D, 1999. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16: 750-759.
  • Lecointre G, Philippe H, Le HLV, Le Guyader H, 1993. Species sampling has a major impact on phylogenetic inference. Mol Phylogenet Evol 2: 205-224.
  • Leache ADT, Reeder W, 2002. Molecular systematics of the eastern fence lizard (Sceloporus undulatus): A comparison of parsimony, likelihood, and Bayesian approaches. Syst Biol 51: 44-68.
  • Lee MSY, 2000. Tree robustness and clade significance. Syst Biol 49: 829-836.
  • Lemmon AR, Moriarty EC, 2004. The importance of proper model assumption in Bayesian phylogenetics. Syst Biol 53: 265-277.
  • Lewis PO, Holder MT, Holsinger KE, 2005. Polytomies and Bayesian phylogenetic inference. Syst Biol 54: 241-53.
  • Li W-H, 1989. A statistical test of phylogenies estimated from sequence data. Mol Biol Evol 6: 424-435.
  • Li W-H, Gouy M, 1990. Statistical tests of molecular phylogenies. Methods Enzymol 183: 645-659.
  • Lunter GA, Miklós I, Drummond AJ, Jensen JL, Hein J, 2005. Bayesian coestimation of phylogeny and sequence alignment. BMC Bioinform 6: 83.
  • Mar JC, Harlow TJ, Ragan MA, 2005. Bayesian and maximum likelihood phylogenetic analyses of protein sequence data under relative branch-length differences and model violation. BMC Evol Biol 5:8.
  • Margush T, McMorris FR, 1981. Consensus n-trees. Bull Math Biol 43: 239-244.
  • Marshall CR, 1991. Statistical tests and bootstrapping: assessing the reliability of phylogenies based on distance data. Mol Biol Evol 8: 386-391.
  • Metropolis N, Rosenbluth AE, Rosenbluth MN, Teller AH, Teller E, 1953. Equation of state calculations by fast computing machines. J Chem Phys 21: 1087-1092.
  • Miller RE, Buckley TR, Manos P, 2002. An examination of the monophyly of morning glory taxa using Bayesian phylogenetic inference. Syst Biol 51: 740-753.
  • Misawa K, Nei M, 2003. Reanalysis of Murphy et al.'s data gives various mammalian phylogenies and suggests overcredibility of Bayesian trees. J Mol Evol57: S290-S296.
  • Mort ME, Soltis PS, Soltis DE, Mabry M, 2000. Comparison of three methods for estimating internal support on phylogenetic trees. Syst Biol 49: 160-171.
  • Murphy WJ, Eizirik E, O'brien SJ, Madsen O, Scally M, Douady CJ, et al. 2001. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294: 2348-2351.
  • Nei M, Stephens JC, Saitou N, 1985. Methods for computing the standard errors of branching points in an evolutionary tree and their application to molecular data from humans and apes. Mol Biol Evol 2: 66-85.
  • Nieselt-Struwe K, von Haeseler A 2001. Quartet-mapping, a generalization of the likelihood-mapping procedure. Mol Biol Evol 18: 1204-1219.
  • Ota R, Waddell PJ, Hasegawa M, Shimodaira H, Kishino H, 2000. Appropriate likelihood ratio tests and marginal distributions for evolutionary tree models with constraints on parameters. Mol Biol Evol 17: 798-803.
  • Oxelman B, Backlund M, Bremer B, 1999. Relationships of the Buddlejaceae s. l. investigated using parsimony jackknife and branch support analysis of chloroplast ndhF and rbcL sequence data. Syst Bot 24: 164-182.
  • Poe S, 1998. Sensitivity of phylogeny estimation to taxonomie sampling. Syst Biol 47: 18-31.
  • Quenouille MH, 1956. Note on bias and estimation. Biometrika 43: 353-360.
  • Redelings BD, Suchard MA, 2005. Joint Bayesian estimation of alignment and phylogeny. Syst Biol 54: 401-418.
  • Reed DL, Carpenter KE, deGravelle MJ, 2002. Molecular systematics of the jacks (Perciformes: Carangidae) based on mitochondrial cytochrome b sequences using parsimony, likelihood, and Bayesian approaches. Mol Phylogenet Evol 23: 513-524.
  • Rodrigo AG, 1993. Calibrating the bootstrap test of monophyly. Int J Parasitol 23: 507-514.
  • Rokas A, Williams BL, King N, Carrol SB, 2003. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425: 798-804.
  • Rzhetsky A, Nei M, 1992a. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9: 945-967.
  • Rzhetsky A, Nei M, 1992b. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 35: 367-375.
  • Rzhetsky A, Nei M, 1993. Theoretical foundation of the minimum evolution method of phylogenetic inference. Mol Biol Evol 10: 1073-1095.
  • Saitou N, Nei M, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406-425.
  • Sanderson MJ, 1989. Confidence limits on phylogenies: the bootstrap revisited. Cladistics 5: 113-129.
  • Sanderson MJ, Wojciechowski MF, 2000. Improved bootstrap confidence limits in large-scale phylogenies, with an example from Neo-Astragalus (Leguminosae). Syst Biol 49: 671-685.
  • Sanjuan R, Wróbel B, 2005. Weighted least-squares likelihood ratio test for branch testing in phylogenies reconstructed from distance measures. Syst Biol 54: 218-229.
  • Shi X, Gu H, Susko E, Field C, 2005. The comparison of the confidence regions in phylogeny. Mol Biol Evol 22: 2285-2296.
  • Shimodaira H, Hasegawa M, 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16: 1114-1116.
  • Shoup S, Lewis L, 2003. Polyphyletic origin of parallel basal bodies in swimming cells of chlorophycean green algae (Chlorophyta). J Phycol 39: 789-796.
  • Siddall ME, 1995. Another monophyly index: revisiting the jackknife. Cladistics 11: 33-56.
  • Siddall ME, Whiting MF, 1999. Long-branch abstractions. Cladistics 15: 9-24.
  • Sitnikova T, Rzhetsky A, Nei M, 1995. Interior-branch and bootstrap tests of phylogenetic trees. Mol Biol Evol 12: 319-333.
  • Sitnikova T, 1996. Bootstrap method of interior-branch test for phylogenetic tress. Mol Biol Evol 13: 605-611.
  • Soltis PS, Soltis DE, 2003. Applying the bootstrap in phylogeny reconstruction. Stat Sci 18: 256-267.
  • Steel M, Matsen FA, 2007. The Bayesian "star paradox" persists for long fine sequences. Mol Biol Evol 24: 1075-1079.
  • Steppan SJ, Adkins RM, Anderson J, 2004. Phylogeny and divergence-date estimates of rapid radiations in muro id rodents based on multiple nuclear genes. Syst Biol 53: 533-553.
  • Streelman JT, Alfaro ME, Westneat MW, Bellwood DR, Karl SA, 2002. Evolutionaiy history of the parrotfishes: biogeography, ecomorphology, and comparative diversity. Evolution 56: 961-971.
  • Strimmer K, von Haeseler A, 1996. Quartet Puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13: 964-969.
  • Strimmer K, von Haeseler A, 1997. Likelihood-mapping: A simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci USA 94: 6815-6819.
  • Strimmer K, Rambaut A, 2002. Inferring confidence sets of possibly misspecified gene trees. Proc R Soc Lond Ser B 269: 137-142.
  • Sullivan J, Markert JA, Kilpatrick CW, 1997. Phylogeography and molecular systematics of the Peromyscus aztecus species group (Rodentia: Muridae) inferred using parsimony and likelihood. Syst Biol 46: 426-440.
  • Susko E, 2003. Confidence regions and hypothesis tests for topologies using generalized least squares. Mol Biol Evol 20: 862-868.
  • Suzuki Y, Glazko GV, Nei M, 2002. Overcredibility of molecular phylogenetics obtained by Bayesian phylogenetics. Proc Natl Acad Sci USA 99: 16138-16143.
  • Svennblad B, Erixon P, Oxelman B, Britton T, 2006. Fundamental differences between the methods of maximum likelihood and maximum posterior probability in phylogenetics. Syst Biol 55L: 116-121.
  • Swofford DL, 2002. PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods). Sunderland, MA: Sinauer Associates.
  • Swofford DL, Olsen GJ, Waddell PJ, Hillis DM, 1996. Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK, eds. Molecular systematics, Sunderland, MA: Sinauer Associates: 407-514.
  • Tajima F, 1992. Statistical method for estimating the standard errors of branch lengths in a phylogenetic tree reconstructed without assuming equal rates of nucleotide substitution among different lineages. Mol Biol Evol 9: 168-181.
  • Taylor DJ, Piel WH, 2003. An assessment of accuracy, error, and conflict with support values from genome-scale phylogenetic data. Mol Biol Evol 21: 1534-1537.
  • Tuffley C, Steel M, 1997. Links between maximum likelihood and maximum parsimony under a simple model of site substitution. Bull Math Biol 59: 581-607.
  • Tukey JW, 1958. Bias and confidence in no quite large samples. Ann Math Stat 29: 614.
  • Waddell PJ, Kishino H, Ota R, 2002. Very fast algorithms for evaluating the stability of ML and Bayesian phylogenetic trees from sequence data. Genome Inform 13: 82-92.
  • Waddell PJ, Steel MA, 1997. General timereversible distances with unequal rates across sites: Mixing G and inverse Gaussian distributions with invariant sites. Mol Phylogenet Evol 8: 398-414.
  • Werman SD, Springer MS, Britten RJ, 1996. Nucleic acids I: DNA-DNA hybridization. In: Hillis DM, Moritz C, Mable BK, eds. Molecular systematics, Sunderland, MA: Sinauer Associates: 169-203.
  • Whittingham LA, Slikas B, Winkler DW, Sheldon FH, 2002. Phylogeny of the tree swallow genus, Tachycineta (Aves: Hirundinidae), by Bayesian analysis of mitochondrial DNA sequences. Mol Phylogenet Evol 22: 430-441.
  • Wilcox TP, Zwickl DJ, Heath TA, Hillis DM, 2002. Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Mol Phylogenet Evol 25: 361-371.
  • Wróbel B, Torres-Puente M, Jimenez N, Bracho M, Garcia-Robles I, Moya A, Gonzalez-Candelas F, 2006. Analysis of the overdispersed clock in the short-term evolution of Hepatitis C Virus: Using the E1/E2 gene sequences to infer infection dates in a single source outbreak. Mol Biol Evol 23: 1242-1251.
  • Wróbel B, Węgrzyn G, 2002. Evolution of lambdoid replication modules. Virus Genes 24: 163-171.
  • Wysocka A, Konopa G, Węgrzyn G, Wróbel B, 2006. Genomic DNA hybridization as an attempt to evaluate phylogenetic relationships of Ostracoda. Crustaceana 79: 1309-1322.
  • Yang Z, Rannala B, 2005. Branch-length prior influences Bayesian posterior probability of phylogeny. Syst Biol 54: 455-470.
  • Zharkikh A, Li W-H, 1992a. Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. I. Four taxa with a molecular clock. Mol Biol Evol 9: 1119-1147.
  • Zharkikh A, Li W-H, 1992b. Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. II. Four taxa without a molecular clock. J Mol Evol 35: 356-366.
  • Zharkikh A, Li W-H, 1995. Estimation of confidence in phylogeny: the complete-and-partial bootstrap technique. Mol Phyl Evol 4: 44-63.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-ff27bb10-9535-490b-b119-9a4ea6ef5243
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.