PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 59 | 2 |

Tytuł artykułu

Modulation of IAA production in Cyanobacteria by tryptophan and light

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Cyanobacteria represent less a investigated group of prokaryote, in terms of their plant growth promoting potential, especially in relation to the production of phytohormones. The present investigation was aimed towards analyzing growth kinetics, indole acetic acid (IAA) production and acetylene reduction activity (ARA) as an index of nitrogen fixation in two selected cyanobacteria) strains belonging to the genus Anahaena, as influenced by tryptophan supplementation and lighkdark conditions. Interesting observations were recorded in terms of enhancement of IAA production accompanied by protein and chlorophyll accumulation in the two cyanobacterial strains grown in media without tryptophan and incubated under lightidark or continuous light conditions. Colorimetric and chromatographic analyses supported the observations that tryptophan is not essential as a precursor for IAA biosynthesis in these cyanobacteria. Further study is in progress to identify genes involved in the tryptophan independent pathway for IAA biosynthesis.

Wydawca

-

Rocznik

Tom

59

Numer

2

Opis fizyczny

p.99-105,fig.,ref.

Twórcy

autor
  • Indian Agricultural Research Institute, New Delhi 110012, India
autor
autor
autor

Bibliografia

  • Arshad M. and W.T. Jr Frankenberger. 1998. Plant growth 5 regulating substances in the rhizosphere: Microbial production and function. Adv. Agron. 62: 45-51.
  • Bapat V.A., R.K. Iyer and P.S. Rao. 1996. Effect of cyanobacterial extract on somatic embryogenesis in tissue cultures of sandalwood. J. Med. Arom. Plant Sci. 18: 10-14.
  • Camerini S., B. Senatore, E. Lonardo, E. Imperlini, C. Bianco, G. Coschetti, G. L. Rotino, B., Campion and R. Defez. 2008. Introduction of novel pathway for IAA Biosynthesis to rhizobia alters vetch root nodule development. Arch. Microbiol. 190: 67-77.
  • Costacurta, A. and J. Vanderleyden. 1995. Accumulation of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol. 21: 1-18.
  • Elliot L. F. and M. Lynch. 1984. Pseudomonas as a factor in the growth of winter wheat (Triticum aestivum L.). Soil Biol. Biochem. 16: 69-71.
  • Gordon A.S. and R.P. Weber. 1951. Colorimetric estimation of indole acetic acid. Plant Physiol. 26: 192-1 95.
  • Gupta A.B. and P.R. Agarwal. 1973. Extraction, isolation and bioassay of a gibberelin like substances from Phormidium foveolarum. Ann. Bot. 37: 737-741.
  • Gupta, S.L. 1983. Acid and alkaline phosphatase activity in cyanobacterium Anacystis nidulans under copper stress. Folia Microbiol. 28: 458-462.
  • Hardy R.W.F., R. C. Burns and R. D. Holsten. 1973. Application of the acetylene ethylene assay for measurement of nitrogen fixation. Soil Biol. Biochem. 5: 47-81.
  • Herbert D., P. J. Phipps and R.E. Strange. 1971. Chemical analysis of microbial cells, pp. 209-344 in J.R. Norris, D.W. Ribbons (Eds.), Methods in Microbiology. Academic Press, New York.
  • Jaiswal P., R. Prasanna, S. Nayak, A. Sood and M.R. Suseela. 2008a. Characterization of rhizo-cyanobacteria and their associations with wheat seedlings. Egyptian J. Biol. 10:20-27
  • Jaiswal P., R., Prasanna and P.K. Singh. 2008b. Cyanobacterial bioactive molecules - an overview of their „cidal" properties. Can. J. Microbiol. 54: 701-717.
  • Kameneva S.V. and E.M. Muronets. 1999. Genetic controls of the processes of interaction of bacteria and plants in association. Genetika 35: 1480-1494.
  • Karthikeyan N., R., Prasanna Lata and B.D. Kaushik. 2007. Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur. J. Soil Biol. 43: 23-30.
  • Karthikeyan N., R. Prasanna, A. Sood, P. Jaiswal, S. Nayak and B.D. Kaushik. 2009. Physiological characterization and electron microscopic investigations of cyanobacteria associated with wheat rhizosphere. Folia Microbiol. 54: 43-51.
  • Kaushik B.D. 2002.Use of cyanobacterial biofertilizer in rice cultivation: A Technology Improvement, pp. 211-222 in Cyanobacterial Biotechnology, G. Subramanian, B.D. Kaushik, G.S. Venkataraman (Eds.), Science Pubis. Inc., USA.
  • Kulik M.M. 1995. The potential for using cyanobacteria (blue green algae) and algae in the biological control of plant pathogenic bacteria and fungi. Eur. J. Plant Pathol. 101: 585-599.
  • MacKinney G. 1941. Absorption of light by chlorophyll solutions. J. Biol. Chem. 140: 315-322.
  • Mandal B.P.L., G. Vlek and L.N. Mandal. 1999. Beneficial effect of blue green algae and Azolla excluding supplying nitrogen, on wetland rice fields: a review. Biol. Fertil. Soils 28: 329-342.
  • Manickavelu A., N. Nadarajan, S.K. Ganesh, R. Ramalingam, S. Raghurainan and R.P. Gnanamalar. 2006. Organogenesis induction in rice callus by cyanobacterial extracellular product. African J. Biotechnol. 5: 437-439.
  • Mishra, A. and D.N. Tiwari. 1986. Effect of tryptophan on 2,4-dichlorophenoxyacetic acid toxicity in the nitrogen-fixing cyanobacterium Nostoc linckia. J. Basic Microbiol. 26: 49-53.
  • Misra S. and B.D. Kaushik. 1989. Growth promoting substances of cyanobacteria. I. Vitamins and their influence on rice plant. Proc. Indian Natl. Sci. Acad. 55: 295-300.
  • Nayak S., R. Prasanna, A. Pabby, T.K. Dominic and P.K. Singh. 2004. Effect of urea and BGA-Azolla biofertilizers on nitrogen fixation and chlorophyll accumulation in soil cores from rice fields. Biol. Fertil. Soils 40: 7-72.
  • Nayak S., R. Prasanna, B.M. Prasanna and D.B. Sahoo. 2007. Analyzing diversity among Indian isolates of Anabaena (Nostocales, Cyanophyta) using morphological, physiological and biochemical characters. World J. Microbiol. Biotechnol. 23: 1575-1584.
  • Nayak S., R. Prasanna, B.M. Prasanna and D.B. Sahoo. 2009. Genotypic and phenotypic diversity of Anabaena isolates from diverse rice agroecologies of India. J. Basic Microbiol. 49: 165-177.
  • Patten, C.L. and B.R. Glick. 1996. Bacterial accumulation of indole-3-acetic acid. Can. J. Microbiol. 42: 207-220.
  • Pillay D. T. N. and R. Mehdl. 1968. Separation of simple indole derivatives by thin layer chromatography. J. Chromatog. 32: 592.
  • Prasanna R., P. Jaiswal and B.D. Kaushik. 2008a. Cyanobacteria as potential options for environmental sustainability-promises and challenges. Indian J. Microbiol. 48: 89-94
  • Prasanna R., P. Jaiswal, Y.V. Singh and P. K Singh. 2008b. Influence of biofertilizers and organic amendments on nitrogenase activity and phototrophic biomass of soil under wheat. Acta Agron. Hung. 56: 149-159. Prasanna R., N. Lata, R. Tripathi, V. Gupta, V. Chaudhary, S. Middha, M. Joshi, R.Ancha and B.D. Kaushik. 2008c. Evaluation of fungicidal activity of extracellular filtrates of Cyanobacteria-possible role of hydrolytic enzymes. J. Basic Microbiol. 48: 186-194.
  • Prasanna R., P. Jaiswal, S. Nayak, A. Sood and B.D. Kaushik.2009a. Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J. Microbiol. 49: 89-97.
  • Prasanna R., A. Sood, P. Jaiswal, S. Nayak, V. Gupta, V. Chaudhary, M. Joshi and C. Natarajan. 2010. Rediscovering cyanobacteria as valuable sources of bioactive compounds. Appl. Biochem. Microbiol. 46: 119-134. Sergeeva E., A. Liaimer and B. Bergman. 2002. Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215: 229-238.
  • Shende S.T., R.G. Apte and T. Singh. 1977. Influence of Azotobacter on germination of rice and cotton seeds. Curr. Sci. 46: 675-676.
  • Singh V.P. and T. Trehan. 1973. Effect of extracellular product of Aulosira fertilissima on the growth of rice seedlings. Plant Soil 38: 457-464. Spaepen S., J. Vanderleyden and R. Remans. 2007. Indole-3-acetic acid in microbial and microorganism-plant signalling. FEMS Microbiol. Rev. 31: 425-448.
  • Srinivas M., D.Vasavi, S. Girisham and S.M. Reddy. 2002. Production of indole acetic acid by anoxygenic phototrophic bacteria under different conditions. Indian J. Microbiol. 42: 215-218.
  • Stanier R.Y., R. Kunisawa, M. Mandel and G. Cohen-Bazire. 1971. Purification and properties of unicellular blue green algae (Order: Chroococcales). Bacteriol. Rev. 35: 171-305
  • Stirk W.A., V. Ordog and J. Staden. 1996. Identification for the cytokinin isopentenyladenine in a strain of Arthronema africanum. J. Physiol. 35: 89-92.
  • Tsavkelova E.A., S.Yu. Klimova, T.A. Cherdyntseva and A.I. Netrusov. 2006. Hormones and Hormone-Like Substances of Microorganisms: A Review Appl. Biochem. Microbiol. 42: 229-235.
  • Venkataraman G.S. 1975. The role of blue green algae in tropical rice cultivation. In: Nitrogen fixation by free-living microorganisms, Stewart, W.D.P. (Eds.) Cambridge University Press, London, pp. 207-268. Venkataraman G.S. and H.K. Saxena. 1963. Studies on nitrogen fixation by blue green algae. IV Liberation of free amino acids in the medium. Indian J. Agric. Sci. 33: 22-24.
  • Wake IL, A., Akasaka, H. Umestsur, Y.R.C. Ozeki, K. Shirmomura and T. Matsunaga. 1992. Promotion of plantlet formation from somatic embryos of carrot treated with a high molecular weight extract from a marine cyanobacterium. Plant Cell Rep. 11: 62-65.
  • Yurekli F., H. Geckil and F. Topcuoglu. 2003. The synthesis of indole-3-acetic acid by the industrially important white rot fungus Lentinus sajor-caju under different culture conditions. Mycol. Res. 107: 305-309.
  • Zaidi S., S. Usmani, B.R. Singh and J. Mussarat. 2006. Significance of Bacillus subtilis strain as bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64: 991-997.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-fd6efd5f-fd32-40c0-b9a2-ecd5d6880598
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.