PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 46 | 3 |

Tytuł artykułu

Fluorescence decay time distribution analysis of cyclic enkephalin analogues. Influence of the solvents and configuration of amino acids in position 2 and 3 on changes in conformation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The lifetime distribution calculations were applied to study the influence of configuration of amino-acid residues in positions 2 and 3 on changes in conformation of the peptide chain of cyclic analogues of enkephalins containing a fluorescence energy donor and acceptor in different solvents. In all the solvents studied the lifetime distributions were bimodal. This testified to the presence of two families of conformations. In this paper the relationship between the population of each conformation and configuration of the residues in position 2 and 3, and the solvent used is discussed.

Wydawca

-

Rocznik

Tom

46

Numer

3

Opis fizyczny

p.615-629,fig.

Twórcy

autor
  • University of Gdansk, J.Sobieskiego 18, 80-952 Gdansk, Poland
autor
autor
autor

Bibliografia

  • 1. Grinwald, A. & Steinberg, I.Z. (1974) On anal­ysis of fluorescence decay kinetics by the method of least squares. Anal Riochem. 59, 583-589.
  • 2. O'Connor, D.V., Ware. W.R. & Andre, J.C. (1979) Deconvolution of fluorescence decay curves: A critical comparison of techniques. J. Phys. Chem. 83,1333-1343.
  • 3. Demas, J.N. (1983) Excited State Lifetime Mea­surements. Academic Press, New York.
  • 4. 0' Connor, D.V. & Philips, D. (1984) TimeCor- related Single-Photon Counting. Academic Press, New York.
  • 5. Birch, DJ.S. & Imhof. R.E. (1991) Time
  • 6. James, D.R. & Ware, W.R. (1985) A fallacy in the interpretation of fluorescence decay pa­rameters. Chem. Phys. Lett. 120, 455-459.
  • 7. James, D.R. & Ware, W.R. (1985) Multi-expo­nential fluorescence decay of indole-3-alkanoic acids. J. Phys. Chem. 89, 5440-5458.
  • 8. Alcala, J.R., Gratton, E. & Prendegrast, F.G. (1987) Resolvability of fluorescence lifetime distribution using phase fluorometry. Biophys. J. 51, 587-596.
  • 9. Alcala, J.R., Gratton, E. & Prendegrast, F.G. (1987) Fluorescence lifetime distribution in proteins. Biophys. J. 51, 597-604.
  • 10. Alcala, J.R., Gratton, E. & Prendegrast, F.G. (1987) Interpretation of fluorescence decays in proteins using continuous lifetime distribu­tions. Biophys. J. 51, 925-936.
  • 11. Lakowicz, J.R., Cherek, H., Gryczynski, I, Joshi, N. & Johnson, M.L. (1987) Analysis of fluorescence decay kinetics measured in the frequency-domain using distributions of decay times. Biophys. Chem. 27, 35-50.
  • 12. Gryczynski, I., Efftink, M. & Lakowicz, J.R. (1988) Conformation heterogeneity in pro­teins as an origin of heterogenous fluores­cence decays, illustrated by native and denaturated ribonuclease Tj. Biochem. Bio­phys. Acta. 954, 244-252.
  • 13. Gryczynski, I., Wiczk, W., Johnson, M.L. & Lakowicz, J.R. (1988) Lifetime distribution and anisotropy decays of indole fluorescence in cyclohexane/ethanol mixtures by fre­quency-domain fluorometry. Biophys. Chem. 32, 173-185.
  • 14. Gryczynski, I., Wiczk, W., Lakowicz, J.R. & Johnson, M.L. (1989) Decay time distribution analysis of Yt-base in benzene-methanol mix­tures. J. Photochem. PhotobioL B: Biology 4, 159-170.
  • 15. Gryczynski, I., Wiczk, W., Inesi, G., Squier, T. & Lakowicz, J.R. (1989) Characterization of the tryptophan fluorescence from sarco­plasmic reticulum adenosinetriphosphatase by frequency-domain fluorescence spectros­copy. Biochemistry 28, 3490-3498.
  • 16. Rosato, N., Gratton, E., Mei, G. & Finazzi- AgTO, A. (1990) Fluorescence lifetime distribu­tions in human superoxide dismutase. Effect of temperature an denaturation. Biophys. J. 58, 817-822.
  • 17. Bismuto, E., Sirangelo, I. & Irace, G. (1992) Fluorescence lifetime distribution of 1,8-ani- linonaphthalenesulfonate (ANS) in reversed micelles detected by frequency domain fluoro­metry. Biophys. Chem. 44, 83-90.
  • 18. Bajzer, Z. & Prendergast, F.G. (1993) A model for multiexponential tryptophan fluorescence intensity decay in proteins. Biophys. J. 65, 2313-2323.
  • 19. Ferreira, S.T., Stella, L. & Gratton, E. (1994) Conformational dynamics of bovine Cu, Zn superoxide dismutase revealed by time-re­solved fluorescence spectroscopy of the single tyrosine residue. Biophys. J. 66, 1185-1196.
  • 20. Lakowicz, J.R., Gryczynski, I., Wiczk, W. & Johnson, M.L. (1994) Distributions of fluores­cence decay times for synthetic melittin in wa- ter-methanol mixture and complexed with calmodulin, troponin C, and phospholipids. J. Fluoresc. 4, 169-177.
  • 21. Swaminthan, R., Krishnamoorthy, G. & Periasamy, N. (1994) Similarity of fluores­cence lifetime distributions for single trypto­phan proteins in the random coil state. Biophys. J. 67, 2013-2023.
  • 22. Vix, A. & Lami, H. (1995) Protein fluorescence decay: discrete components or distribution of lifetimes? Really no way out of the dilemma? Biophys. J. 68, 1145-1151.
  • 23.Stella, L., Caccuri, A.M., Rosato, N., Nicotras, M., Lo Bello, M., De Matties, F., Mazzetti, A.P., Federic, G. & Ricci, G. (1998) Flexibility of helix 2 in the human glutathione trans ferase P. J. Biol Chem. 273, 23267-23273.
  • 24. Livesy, A.K. & Brochon, J.-C., (1987) Ana­lyzing the distribution of decay constants in pulse-fluorimetry using the maximum entropy method. Biophys. J. 52, 693-706.
  • 25. Remade, F. & Levine, R.D. (1993) Time-do­main information from frequency- or time-re­solved experiments using maximum entropy. J. Phys. Chem. 97, 12553-12560.
  • 26. Brochon, J.-C. (1994) Maximum entropy method of data analysis in time-resolved spec­troscopy. Methods Enzymol 240, 262-311.
  • 27. Swaminathan, R. & Perisamy, N. (1996) Anal­ysis of fluorescence decay by the maximum en­tropy method: Influence of noise and analysis parameters of the width of the distribution of lifetimes. Prcc. Indian Acad. Sci. (Chem. Sci.) 108, 39-49.
  • 28.Siemiarczuk, A., Wagner, B.D. & Ware, W.R. (1990) Comparison of the entropy and expo­nential series methods for recovery of distri­butions of lifetimes from fluorescence lifetime data. J. Phys. Chem. 94, 1661-1666.
  • 29. Landl, G., Langthaler, T., Engl, H.W. & Kauffman, H.F. (1991) Distribution of event time in time-resolved fluorescence: The expo­nential series approach-algorithm, regulariza- tion, analysis. J. Comp. Phys. 95, 1-28.
  • 30. Fields, G.B. & Noble, R.L. (1990) Solid phase peptide synthesis utilizing 9-fluorenylme- thoxycarbonyl amino acids. Int. J. Peptide Pro­tein Res. 35, 161-214.
  • 31. Schmidt, R. & Neubert, K. (1991) Cyclization studies with tetra- and pentapeptide se­quences corresponding to beta-casomorphins. Int. J. Peptide Protein Res. 37, 502-507.
  • 32. Wilkes, B.C., Zelent, B., Malak, H., Schmidt, R. & Schiller, P.W. (1999) Interpretation of the fluorescence decay characteristic of cyclic /5-casomorphin analogs based on theoretically calculated ensembles of their low energy con- formers. Peptides. Frontiers of Peptide Science. Proceedings of the Fifteenth American Peptide Symposium, 1977, Nashville, Tennessee, U.S.A. (Tam, J.P. & Kaumaya, P.T.P., eds.) pp. 430-431, Kluwert Academic Press, Dordecht, Boston, London.
  • 33. Mammi, N.J., Hassan, M. & Goodman, M. (1985) Conformational analysis of a cyclic enkephalin analogue by NMR and com­puter simulation. J. Amer. Chem. Soc. 107, 4008-4013.
  • 34. Mierke, D.F., Said-Nejad, O.E., Schiller, P.W. & Goodman, M. (1990) Enkephalin analogues containing /3-naphthylalanine at fourth posi­tion. Biopolymers 29, 179-196.
  • 35. Shederovich, M.D., Nikiforovich, G.V., Jiao, D. & Hruby, V.J. (1996) Conformational analy­sis of /3-methyl-para-nitrophenylalanine stereo­isomers of cyclolD-Pen2, D-Pen5lenkephalin by NMR spectroscopy and conformational en­ergy calculations. Biopolymers 38, 141-156.
  • 36. Carpenter, K.A., Schiller, P.W., Schmidt, R. & Wilkes, B.C. (1996) Distinct conformational preferences of three cyclic beta-casomorfin-5 analogs determined using NMR spectroscopy and theoretical analysis. Int. J. Peptide Protein Res. 48, 102-111.
  • 37. Malicka, J., Groth, M., Czaplewski, C., Kas- przykowska, R., Liwo, A., Lankiewicz, L. & Wiczk, W. (1998) Computer modeling of the solution conformation of cyclic enkephalins. Lett Pept. Sci 5, 445-447.
  • 38. Rice, K.G., Wu, P., Brand, L. & Lee, Y. C. (1991) Interterminal distance and flexibility of a triantennary glycopeptide as measured by resonance energy transfer. Biochemistry 30, 6646-6655.
  • 39. Wu, P., Bok, K., Lee, Y.C. & Brand, L. (1996) Solution conformations of a biantennary glycopeptide and a series of its exoglycosidase products from sequential trimming of sugar residues. J. Biol Chem. 271, 1470-1474.
  • 40.Szmacinski, H., Wiczk, W., Fishman, M.N., Eis, P.S., Lakowicz, J.R. & Johnson, M.L. (1996) Distance distributions from the tyrosyl to disulfide residues in the oxitocin and [Arg8]-vasopressin measured using fre- quency-domain fluorescence resonance en­ergy transfer. Eur. Biophys. J. 24, 185-193.
  • 41. Wiczk, W., Lankiewicz, L., Kasprzykowski, F., Oldziej, S., Szmacinski, H., Lakowicz, J.R. & Grzonka, Z. (1997) Fluorescence study of neurohypophyseal hormones and their ana­logues. Distance distributions in series of arginine-vasopressin analogues. Eur. Biophys. J. 26, 183-193.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-fd21a4e6-4a46-45d2-b9cc-4a7f16d34acb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.