PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1996 | 41 | 1 |

Tytuł artykułu

Succession of coral associations during a Givetian transgressive-regressive cycle in Queensland

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The small solitary coral dominated, Grypophyllum-Chostophyllum association, a pioneer coral community, is widely distributed at the base of the Givetian Burdekin Formation of north Queensland in the mixed arkose-carbonate sediments. It is succeeded by fasciculate coral dominated, Dendrostella trigemne association, which is mainly associated with wackestone or bioclastic calcirudite of inner shelf, lagoonal or protected environments. The Australophyllum-Sanidophyllum association, Blysmatophyllunt-Iotuaphgllum schlueteri association, and Spongophgllstm association, all dominated by in situ, large massive coral colonies, formed biostromal deposits on the margins of the basin. They developed in nearshore environments during the maximum flooding in the region. The Aphyllum salmoni-Stringophgllum (Neospongophyllum) bipartitum association indicates relatively deeper, mid-outer shelf environments connected with maximum flooding in the depocentre and least terrigenous influx. The massive coral dominated Endophyllum columna-Stringophyllum (Stringophyllum) isactis association, developed in the initial regressive phase, forms a distinctive biostromal unit at the top of the Burdekin Formation. The Lekanophyllum association developed at the base of the Cultivation Gully Formation in a very shallow nearshore environment with a large terrigendus influx as a result of the basin wide, relatively rapid regression. It is characterised by the abundant occurrence of solitary corals and large sized, cerioid Endophyllum columna, which often formed micro-atolls. Rugose corals were better adapted than stromatoporoids to survive of mud inllux.
PL
Kopalny zapis środkowodewońskiejj transgresji morskiej (maximum we wczesnym żywecie) w północnej części stanu Queensland pozwala na prześledzenie sukcesji zespołów koralowców w miarę rozwoju i zaniku zbiornika morskiego. Pierwsze korale pojawiły się w tym regionie podczas sedymentacji wapnistych piaskowców w stropie Big Bend Arkose. Dominują w tym zespole pojedyncze korale Grypophyllum i Chostophyllum; występuje tam również swobodnie leżąca na dnie Calceola. Jest to epoka największego zróżnicowania gatunkowego korali, ale większość z nich to formy pojedyncze, z niewielkim udziałem gałązkowych. Pełnomorskim warunkom niewątpliwie odpowiada nadległa formacja Burdekin, sięgająca 500 m miąższości. Udział korali pojedynczych zmniejsza się stopniowo (wraz z tym i zróżnicowanie taksonomiczne zespołów), pojawiają się natomiast masywne kolonie. Biostromy z koralami i stromatoporami rozprzestrzeniały się w jej trakcie ku obszarom uprzednio przybrzeżnym. Stadium transgresywne reprezentuje dolna część formacji z koralami Dendrostella trigemme i Disphgllum; stadium regresywne część górna z koloniami. Endophyllum columna; w obydwu spory udział mają korale o masywnych koloniach. Pośrodku występuje zespół maximum transgresji zdominowany przez korale pojedyncze i gałązkowe. Korale, glony i stromatopory były głównym źródłem osadu wapiennego. Zapis regresji kontynuuje nadległa formacja Cultivation Gully, złożona z wapiennych mułowców, łupków i drobnoziarnistych piaskowców, odpowiadająca stosunkowo szybkiej fazie regresywnej. Dopływ terrygenicznego materiału klastycznego był głównym czynnikiem, który doprowadził do zaniku sedymentacji węglanowej na szelfie. Korale czteropromienne stosunkowo lepiej od stromatopor znosiły dopływ piasku i mułu, tworząc małe biostromy nawet w płytkich przybrzeżnych środowiskach piaszczystych.

Wydawca

-

Rocznik

Tom

41

Numer

1

Opis fizyczny

s.59-88,tab.,fot.,rys.,bibliogr.

Twórcy

autor
  • Centre for Ecostratigraphy and Palaeobiology, School of Earth Sciences, Macquarie University, NSW 2109, Australia

Bibliografia

  • Bjerstedt, T.W. & Feldmann, R.M. 1985. Stromatoporoid paleosynecology in the Lucas Dolostone (Middle Devonian) on Kelleys Island, Ohio. Journal of Paleontology 59, 1033-1061.
  • Chamberlain, S. 1978. Mechanical properties of coral skeleton: compressive strength and its adaptive significance. Paleobiology 4, 419-435.
  • Chappell, J. 1980. Coral morphology, diversity and reef growth. Nature 286. 249-252.
  • Connolly, W.M., Lambert, L.L., & Stanton, R.J. 1989. Palaeoecology of lower and middle Pennsylvanian (Middle Carboniferous) Chaetetes in North America. Facies 20, 139-168.
  • Copper, P. 1988. Ecological succession in Phanerozoic reef ecosystems: Is it real? Palaios 3, 136-152.
  • Elias, R.J. 1984. Paleobiology of solitary rugose corals, Late Ordovician of North America. Palaeontographica Americana 54, 533-537.
  • Graus, R.R., Chamberlain, J.A., & Boker, A. 1977. Structural modification of corals in relation to waves and currents. In: S.H. Frost, M.P. Weiss, & J.B. Saunders (eds) Reefs and related carbonates-ecology and sedimentology. Studies in Geology, American Association of Petroleum Geologists 4, 135-153.
  • Hallock, P. 1988. The role of nutrient availability in bioerosion; consequences to carbonate build-ups. Palaeogeography, Palaeoclimatology, Palaeoecology 63, 275-291.
  • Hallock, P. & Schlager, W. 1986. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1, 389-398.
  • Hill, D. 1942. The Middle Devonian rugose corals of Queensland (3): Burdekin Downs, Fanning River and Reid Gap, north Queensland. Proceedings of the Royal Society of Queensland 53, 229-68.
  • Hubbard, J.A.E.B. & Pocock, Y.P. 1972. Sediment rejection by recent scleractinian corals: a key to palaeo-environmental reconstruction. Geologische Rundschau 61, 598-626.
  • Jack, R.L. & Etheridge, R. Jr. 1892. Geology and palaeontologr of Queensland and New Guinea. Geological Survey of Queensland Publication 92, 1-768.
  • Jackson, J.B.C. 1977. Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies. American Naturalist 111, 743-767.
  • James, N.P. & Bourque, P.-A. 1992. Reefs and mounds. In: R.G. Walker & N.P. James (eds) Facies Models: Response to Sea Level Change, 323-347. Geological Association of Canada, Ontario.
  • Johes, B. & Desrochers, A. 1992. Shallow platform carbonates. In: R.G. Walker & N.P. James (eds) Facies Models: Response to Sea Leuel Change, 277-301. Geological Association of Canada, Ontario.
  • Johnson, D.P., Belperio, A.P., & Hopley, D. 1986. A field guide to mixed terrigenous-carbonate sedimentation in the central Great Barrier Reef Province, Australia. Australasian Sedimentologists Group Field Guide Series No. 3. 173 pp. Geological Society of Australia, Sydney.
  • Kershaw, S. 1987. Stromatoporoid-coral intergrowths in a Silurian biostrome. Lethaia 20, 371-380.
  • Laboute, P. 1988. The presence of scleractinian corals and their means of adapting to a muddy environment. Proceedings of the 6th International Coral Reef Symposium, Australia, 1988, vol. 3, 107-111. Townsville.
  • Lang, S.C., Fleming, P.J.G., Jell, J.S., Zhen, Y.Y., & Cook, A. 1990. The Devonian-Carboniferous intracratonic Burdekin Basin, north Queensland: I. Carbonate-siliciclastic facies of the Fanning River Group. Proceedings, Pacific Rim Congress 1990, Volume III, 621-630. Australasian Institute of Mining and Metallurgy, Melbourne.
  • Leichhardt, L. 1847. Journal of an Overland Expedition in Australia, from Moreton Bay to Port Essington, a Distance of Upward of 3000 miles. During the Years 1844-5. 544 pp. Boone, London.
  • Levinton, J.S. 1970. The paleoecological significance of opportunistic species. Lethaia 3, 69-78.
  • Logan, B.W. 1984. Pressure responses (deformation) in carbonate sediments and rocks analysis and application, Canning Basin. In: P.G. Purcell (ed.) The Canning Basin, W.A., 235-251. Proceedings GSA/PESA Canning Basin Symposium, Perth, 1984.
  • Maxwell, W.G.H. 1968. Atlas of the Great Barrier Reef. 258 pp. Elsevier, Amsterdam.
  • Mistiaen, B. 1984. Comments on the caunopore tubes: stratigraphic distribution and microstructure. Paleontographica Americana 54, 501-508.
  • Mori, K. 1970. Stromatoporoids from the Silurian of Gotland, part II. Stockholm Contributions in Geology 22, 1-152.
  • Neuman, B.E.E. 1988. Some aspects of life strategies of Early Palaeozoic rugose corals. Lethaia 21, 97-114.
  • Noble, J.P.A. 1970. Biofacies analysis, Cairn Formation of Miette Reef Complex (Upper Devonian) Jasper National Park, Alberta. Bulletin of Canadian Petroleum Geology 18, 493-543.
  • Pandolfi, J.M. 1984. Environmental influence on growth form in some massive tabulate corals from Hamilton Group (Middle Devonian) of New York State. Palaeontographica Americana 54, 534-542.
  • Różkowska, M. 1980. On Upper Devonian habitats of rugose corals. Acta Palaeontologica Polonica 25, 597-611.
  • Scoffin, T.P. & Stoddart, D.R. 1978. The nature and significance of microatolls. Philosophical Transactians of the Rogal Societg of London B284, 99-122.
  • Stearn, C.W. 1982. The shapes of Paleozoic and modern reef-builders: a critical review. Paleobiology 8, 228-241.
  • Stolarski, J. 1993. Ontogenetic development and functional morphology in the early growth stages of Calceola sandolina (Linnaeus, 1991). Courier Forschungsinstitut Senckenberg 164, 169-177
  • Webby, B.D., Zhen, Y.Y., & Percival, I.G. (in press). Ordovician coral- and sponge-bearing associations: distribution and significance in valcanic island shelf to slope habitats, eastern Australia. Proceedings of Seventh International Symposium on Fossil Cnidaria, 1995, Madrid.
  • Weedon, M.J. 1991. Microstructure and affinity of the enigmatic Devonian tubular fossil Trypanopora. Lethaia 24, 227-234.
  • Wells, J.W. 1969. The formation of dissepiments in Zoantharian corals. In: K.S.W. Campbell (ed.) Stratigraphy and Palaeontology: Essays in honour of Dorothy Hill, 17-26. Australian National University Press, Canberra.
  • Withnall, I.W., Lang, S.C., Jell, J.S., McLennan, T.P.T., Talent, J.A., Mawson, R., Fleming, P.J.G., Law, S.R., Macansh, J.D., Savory, P., Kay, J.R., & Draper, J.J. 1988. Stratigraphy, sedimentology, biostratigraphy and tectonics of the Ordovician to Carboniferous, Broken River Province, north Queensland. Australasian Sedimentologists Group Field Guide Series No.5. 200 pp. Geological Society of Australia, Sydney.
  • Withnall, I.W. & Lang, S.C. 1990. Tectonic history of the Palaeozoic Broken River Province, north Queensland. Proceedings, Pacific Rim Congress 1990, Volume II, 315-323. Australasian Institute of Mining and Metallurgy, Melbourne.
  • Wyatt, D.H. & Jell, J.S. 1980. Devonian and Carboniferous stratigraphy of the northern Tasman orogenic zone in the Townsville Hinterland, north Queensland. In: R.A. Henderson & P.J. Stephenson (eds) The Geology and Geophysics of Northeastern Australia, 201-228. Geological Society of Australia, Queensland Division, Brisbane.
  • Young, G.A. & Noble, J.P.A. 1989. Variation and growth of a syringoporid symbiont species in stromatoporoids from the Silurian of eastern Canada. Memoir of the Association of Australasian Palaeontologists 8, 91-98.
  • Zhang, Z. 1981. Early to Middle Devonian stratigraphy and tabulate coral faunas from western part of South Qinling Range. 208 pp. Science Press (Beijing). [in Chinese]
  • Zhen,Y.Y. 1991. Devonian rugose coral faunas and biostratigraphy of the Fanning River Group, north Queensland. Ph.D. thesis, University of Queensland.
  • Zhen, Y.Y., Lang, S.C., & Jell, J.S. 1993. A new biostratigraphic framework and lithostratigraphic nomemclature for the Devonian Fanning River Group, Burdekin Basin, north Queensland. Queensland Government Mining Journal 94, 7-14.
  • Zhen, Y.Y. 1994. Givetian rugose corals from the northern margin of the Burdekin Basin, north Queensland. Alcheringa 18, 301-343.
  • Zhen,Y.Y. 1995. Late Emsian rugose corals of the Mount Podge area, Burdekin Basin, north Queensland. Alcheringa 19, 193-234.
  • Zhen, Y.Y. & Jell, J.S. (in press) Middle Devonian rugose corals from the Fanning River Group, north Queensland, Australia. Palaeontographica A.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-fb9d3ef1-871e-4f5d-a6b0-cbb4c179f3ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.