PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 49 | 1 |

Tytuł artykułu

Is tRNA only a translation factor or also a regulator of other processes

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
tRNA has been discovered as a factor playing a central role in the translation of genetic information (encoded in DNA and transcribed to mRNA) into amino acid sequences of proteins. However, subsequent studies led to the hypothesis that during evolution, tRNA originated in replication, not translation. Indeed, there are many examples of tRNA-like molecules playing roles in reactions other than translation, including replication of various replicons. In this review, we have focused on functions of tRNA molecules (not tRNA-like structures) outside of their direct roles in translation as factors for a passive transportation of amino acids into a ribosome and deciphering triplets of nucleotides in codons of mRNA. Interestingly, it appears that such tRNA-dependent reactions are effective only when tRNA is uncharged. The most spectacular examples come from bacterial cells and include induction of the stringent control, regulation of transcription of some operons, and control of replication of ColE 1 -type plasmids. Recent studies indicated that tRNA (not only pre-tRNA, shown previously to be capable of self-excision of intron sequences) can be responsible for specific cleavage of another transcript, a ColE I plasmid-encoded RNA I, which is involved in the regulation of plasmid DNA replication initiation. If this reaction is not restricted to RNA I but represents a more general phenomenon, one might suspect a potential role for uncharged tRNA molecules in regulation of various processes, whose efficiency depends on tRNA-cleavable RNAs. This kind of regulation would provide a possibility for a cell to respond to different nutrition conditions resulting in different levels of tRNA aminoacylation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

49

Numer

1

Opis fizyczny

p.115-122,fig.,ref.

Twórcy

autor
  • Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
  • Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
  • Laboratory of Molecular Biology (affiliated with University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Gdańsk, Poland

Bibliografia

  • Braeken K, Moris M, Daniels R, Vanderleyden J, Michiels J, 2006. New horizons for (p)ppGpp in bacterial and plant physiology. Trends Microbiol 14: 45-54.
  • Cashel M, Gentry D, Hernandez VJ, Vinella D, 1996. The stringent response. In: Neidhardt FC, Curtiss III R, Ingraham J, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger H, eds. Escherichia coli and Salmonella: Cellular and molecular biology. American Society for Microbiology, Washington DC, vol. I: 1458-1496.
  • Chiang C-C, Lambowitz AM, 1997. The Mauriceville retroplasmid reverse transcriptase initiates cDNA synthesis de novo at the 3' end of tRNAs. Mol Cell Biol 17: 4526-4535.
  • del Solar G, Giraldo R, Ruiz-Echevarria MJ, Espinosa M, Diaz-Orejas R, 1998. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 62: 434-464.
  • Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch AG, 2000. Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell 6: 269-279.
  • Dorazi R, 2003. Can tRNAs act as antisense RNA? The case of mutA and dnaQ. J Theor Biol 225: 383-388.
  • Fiammengo R, Jaschke A, 2005. Nucleic acid enzymes. Curr Opin Biochem 16: 614-621.
  • Florentz C, Sissler M, 2001. Disease-related versus polymorphic mutations in human mitochondrial tRNAs. EMBO Rep 2: 481-486.
  • Frank J, Sangupta J, Gao H, Li W, Valle M, Zavialov A, Ehrenberg M, 2005. The role of tRNA as a molecular spring in decoding, accommodation, and peptidyl transfer. FEBS Lett 579: 959-962.
  • Giege R, Frugier M, Rudinger J, 1998. tRNA mimics. Curr Opin Struct Biol 8: 286-293.
  • Grundy FJ, Yousef MR, Henkin TM, 2005. Monitoring uncharged tRNA during transcription of the Bacillus subtilis glyQS gene. J Mol Biol 346: 73-81.
  • Hao S, Sharp JW, Ross-Inta CM, McDaniel BJ, Anthony TG, Wek RC, et al. 2005. Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex. Science 307: 1776-1778.
  • Hecker M, Schroeter A, Mach F, 1983. Replication of pBR322 DNA in stringent and relaxed strains of Escherichia coli. Mol Gen Genet 190: 355-357.
  • Hopper AK, Phizicky EM, 2003. tRNA transfers to the limelight. Genes Dev 17: 162-180.
  • Kirino Y, Suzuki T, 2005. Human mitochondrial diseases associated with tRNA wobble modification deficiency. RNA Biol 2: 41-44.
  • Laursen BS, Sorensen HP, Mortensen KK, Sperling-Petersen HU, 2005. Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev 69: 101-123.
  • Lee SR, Collins K, 2005. Starvation-induced cleavage of the tRNA anticodon loop in Tetrahymena thermophila. J Biol Chem 280: 42744-42749.
  • Lee SW, Cho BH, Park SG, Kim S, 2004. Aminoacyl-tRNA synthetase complexes: beyond translation. J Cell Sci 117: 3725-3734.
  • Lin-Chao S, Bremer H, 1986. Effect of relA function on the replication of plasmid pBR322 in Escherichia coli. Mol Gen Genet 203: 150-153.
  • Magnusson LU, Farewell A, Nystrom T, 2005. ppGpp: a global regulator in Escherichia coli. Trends Microbiol 13: 236-242.
  • Maizels N, Weiner AM, 1994. Phylogeny from function: evidence from molecular fossil record that tRNA originated in replication, not translation. Proc Natl Acad Sci USA 91: 6729-6734.
  • McFarland R, Elson J, Taylor RW, Howell N, Turnbull DM, 2004. Assigning pathogenicity to mitochondrial tRNA mutations: when 'definitely maybe' is not good enough. Trends Genet 20: 591-596.
  • Nakanishi K, Nureki O, 2005. Recent progress of structural biology of tRNA processing and modification. Mol Cells 19: 157-166.
  • Phizicky EM, 2005. Have tRNA, will travel. Proc Natl Acad Sci USA 102: 11127-11128.
  • RajBhandary UL, Kohrer C, 2006. Early days of tRNA research: discovery, function, purification and sequence analysis. J Biosci 31: 439-451.
  • Shaheen HH, Hopper AK, 2005. Retrograde movement of tRNAs from the cytoplasm to the nucleus in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 102: 11290-11295.
  • Szymański M, Barciszewski J, 2007. The genetic code -40 years on. Acta Biochim Pol 54: 51-54.
  • van Tol H, Gross HJ, Beier H, 1989. Non-enzymatic excision of pre-tRNA introns? EMBO J 8: 293-300.
  • Wang H, Lambowitz AM, 1993. The Mauriceville plasmid reverse transcriptase can initiate cDNA synthesis de novo and may be related to reverse transcriptase and DANN polymerase progenitor. Cell 75: 1071-1081.
  • Wang Z, Le G, Shi Y, Węgrzyn G, Wróbel B, 2002. A model for regulation of ColE 1-like plasmid replication by uncharged tRNAs in amino-acid-starved Escherichia coli cells. Plasmid 47: 69-78.
  • Wang Z, Yuan Z, Xiang L, Shao J, Węgrzyn G, 2006. tRNA-dependent cleavage of the ColEl plasmid-encoded RNA I. Microbiology 152: 3467-3476.
  • Wang J, Sanders G, Grossman AD, 2007. Nutritional control of elongation of DNA replication by (p)ppGpp. Cell 128: 865-875.
  • Weber U, Beier H, Gross HJ, 1996. Another heritage from the RNA world: self-excision of intron sequences from nuclear pre-tRN As. Nucleic Acids Res 24: 2212-2219.
  • Węgrzyn G, 1999. Replication of plasmids during bacterial response to amino acid starvation. Plasmid 41: 1-16.
  • Weiner AM, Maizels N, 1987. 3'-terminal tRNA-like structures tag genomie RNA molecules for replication: implications for the origin of protein synthesis. Proc Natl Acad Sci USA 84: 7383-7387.
  • Weiner AM, Maizels N, 1999. The genomic tag hypothesis: modern viruses as molecular fossils of ancient strategies for genomic replication, and clues regarding the origin of protein synthesis. Biol Bull 196: 327-330.
  • Wróbel B, Węgrzyn G, 1998. Replication regulation of Co1E1 -like plasm ids in amino-acid-starved Escherichia coli. Plasmid 39: 48-62.
  • Yanofsky C, 2004. The different roles of tryptophan transfer RNA in regulating trp operon expression in E. coli versus B. subtilis. Trends Genet 20: 367-374.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-f74c114c-42ae-4e51-8ba4-fc17e4d7b58c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.