PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 17 | 1 |

Tytuł artykułu

The use of wetlands for the monitoring of non-point source air pollution

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The distribution of polycyclic aromatic hydrocarbons (PAHs) in plant and organic soil from 14 peatland sites in NE Poland and 7 peatland sites in SE Poland have been investigated. The total PAH concentration in the leaves of Ledum palustre collected from peatlands in NE Poland ranged from 232 ng/g to 1523 ng/g and was higher than the total PAH concentration in pine needles (Pinus sylvestris) taken from those same peatlands (the values ranged from 181 to307 ng/g). A similar trend was observed in the case of plants from the peatlands in SE Poland, except that the overall PAH concentration in the majority of the plant samples was found to be higher than those found in NE Poland. Phenanthrene and fluoranthene had the biggest share in the overall PAH concentration in all the peat and plant samples. The lack of 5- and 6-ringed PAHs in the plant and soil material indicates the lack of any direct emission sources of these compounds in regions adjacent to those examined in the study. Total sum of PAH pollution levels in peats and plants as well as vertical distribution of the concentrations in the soil profile of particular study sites integrates long-range pollution sources. To compare natural and antropogenic PAH input in the pealtlands, we have used parent PAH ratios: ANT/(ANT&PHE); FLT/(FLT&PYR). Our data suggest that PAHs with four and more rings do not allow a simple segregation into combustion or petroleum sources.

Wydawca

-

Rocznik

Tom

17

Numer

1

Opis fizyczny

p.57-70,fig.,ref.

Twórcy

autor
  • University of Warsaw, Al.Ujazdowskie 4, 00-478 Warsaw, Poland
autor

Bibliografia

  • 1. HORNBUCKLE K. C., EISENREICH S. J. Dynamics of Gaseous semivolatile organic compounds in a terrestrial ecosystem-effects of diurnal and seasonal climate variations. Atmospheric Environment 30, (23), 3935, 1996.
  • 2. CONTI M. E., CECHETTI G., Biological monitoring: lichens as bioindicators of air pollution assessment – a review. Environmental Pollution 114, 471, 2001.
  • 3. THOMAS W., Representativity of mosses as biomonitor organisms for the accumulation of environmental chemicals in plants and soils. Ecotox. Environ. Safety 11, 339, 1986
  • 4. RICHARDSON D. H. S, Lichens as biological indicators. Recent developments. In: Jeffrey D.W., Madden B.(Eds.), Bioindicators and Environmental Management. Academic Press, London, pp. 263-272, 1991.
  • 5. SEAWARD M. R. D., Lichens and sulphur dioxide air pollution: field studies. Env. Reviews 1, 73, 1993.
  • 6. GRIES C., Lichens as indicators of air pollution. In: Nash III, T., H. (ED.), Lichen Biology. Cambridge University Press. Cambridge, pp. 240-254, 1996.
  • 7. MIGASZEWSKI Z. M., GALUSZKA A., PASLAWSKI P., Polynuclear aromatic hydrocarbons, phenols, and trace metals in selected soil profiles and plant bioindicators in the Holy Cross Mountains, South-Central Poland. Environment International 28, 303, 2002.
  • 8. STEINNES E., RAMBEAK J. P., HANSSEN J. E., Large scale multielement survey of atmosperic deposition using naturally growing moss as biomonitor. Chemosphere 25, 735, 1992.
  • 9. WEGENER J. W., VAN SCHAIK M. J., AIKING H., Active biomonitoring of polycyclic aromatic hydrocarbons by means of mosses. Environmental Pollution 76, 1, 1992.
  • 10. WEISS D., SHOTYK W., KRAMERS J. D., GLOOR M., Sphagnum mosses as archives of recent and past atmospheric lead deposition in Switzerland. Atmospheric Environment 33, 3751, 1999.
  • 11. HOLOUBEK I., KORINEK P., SEDA Z., SCHNEIDEROVA E., HOLOUBKOVA I., TRISKA J., CUDLIN P., CASLAVSKY J., The use of mosses and pine needles to detect persistant organic pollutants at local and regional scales. Environmental Pollution, 109, 283, 2000.
  • 12. ORLINSKI N., Multipoint moss passive samplers assessment of urban airborne polycyclic aromatic hydrocarbons: concentrations profile and distribution along Warsaw main streets. Chemosphere 48, 181, 2002.
  • 13. ŐTVOS E., KOZAK I. O., FEKETE J., SHARMA V. K., TUBA Z., Atmosperic deposition of polycylic aromatic hydrocarbons (PAHs) in mosses (Hypnum cupressiforme) in Hungary. Science of the Total Environment 330, 89, 2004.
  • 14. RAURET G., LAURADO M., TENT J., RIGOL A., ALEGRE L., UTRILLAS M., Deposition on holm oak leaf surfaces of accidentally released radionuclides. The Science of the Total Environment 157, 7, 1994.
  • 15. HOWSAM M., INESON P., JONES K., C., PAHs associated with the leaves of three deciduous tree species. I – concentration and profiles. Environmental Pollution 108, 413, 2000.
  • 16. ALFANI A., DE NICOLA F., MAISTO G., PRATI M.V., Long-term accumulation after bud break in Quercus ilex L. leaves in a polluted environment. Atmospheric Environment 39, 307, 2005.
  • 17. KYLIN H., GRIMVALL E., OSTMANN C., Environmental monitoring of polychlorinated biphenyls using pine needles as passive samplers. Environ. Sci. Technol. 28, 1320, 1994.
  • 18. SIMONICH S., HITES R., Vegetation – atmosphere partitioning of polycyclic aromatic hydrocarbons. Environ. Sci. Technol 28, 939, 1994.
  • 19. KYLIN H., Airborne lipophilic pollutants in pine needles. Environ. Sci. Pollut. Res. 3, 218, 1996.
  • 20. WAGROWSKI D., HITES R., Polycyclic aromatic hydrocarbons accumulation in urban, suburban and rural vegetation. Environ. Sci. Technol. 31, 279, 1997.
  • 21. LANG Q., HUNT F., WAI C., Supercritical fluid extraction of polycyclic aromatic hydrocabons from white pine (Pinus strobus) needles and its implications. J. Environ. Monit. 2, 639, 2000.
  • 22. HWANG H., TERRY L., SERICANO J. L., Concentrations and source characterisation of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico, and United States. Etmospheric Environment 37, 2259, 2003.
  • 23. KYLIN H., SJODIN A., Accumulation of airborne hexachlorocyclohexane and DDT in pine needles. Environ Sci. Technol. 37, 2350, 2003.
  • 24. DOLINOVA J., KLANOVA J., KLAN P., HOLOUBEK I., Photodegradation of organic pollutants on the spruce needle wax surface under laboratory conditions. Chemosphere 57, 1399, 2004.
  • 25. PICCARDO M. T., PALA M., BONACCURSO B., STELLA A., REDAELLI A., PAOLA G., VALERIO F., Pinus nigra and Pinus pinaster needles as passive samplers of polycyclic aromatic hydrocarbons Chemosphere 133, 293, 2005.
  • 26. LEHNDORF E., SCHWARK L., Biomonitoring of air quality in the Cologne Conurbation using pine needles as a passive sampler—Part II: polycyclic aromatic hydrocarbons (PAH). Atmospheric Environment 38, 3793, 2004.
  • 27. SIMONICH S., HITES R., Importance of vegetation in removing Polycyclic Aromatic Hydrocarbons from the atmosphere. Nature 370, 49, 1994.
  • 28. TREMBLAY L., KOHL S. D., RICE J. A., GAGNE J. P., Effects of temperature, salinity, and dissolved humic substances on the sorption of polycyclic aromatic hydrocarbons to estaurine particles. Marine Chemistry 96, 21, 2005.
  • 29. HOWSAM M., JONES K., INESON P., Dynamics of PAH deposition, cycling and storage in a mixed–deciduous (Quercus-Fraxinus) woodland ecosystem. Environmental Pollution 113, 163, 2001.
  • 30. AAMOT E., STEINNES E., SCHMID R., Polycyclic aromatic hydrocarbons in Norwegian forest soils: Impact of long range atmospheric transport. Environmental Pollution 92, 275, 1996.
  • 31. MALAWSKA M., WILKOMIRSKI B., The use of Dutsch myrthe (Ledum palustre) and pine needles (Pinus sylvestris) to detect the Polycyclic Aromatic hydrocarbons (PAHs) at regional scale. Toxicology Letters 144, Suppl.1, 175, 2003.
  • 32. KRAUSS M., WILCKE W., ZECH W., Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in forest soils: depth distribution as indicator of different fate. Environmental Pollution 110, 79, 2000.
  • 33. BURKHARD L. P., Estimating dissolved organic carbon partition coefficients for nonionic organic chemicals. Environ. Sci. Technol. 34 (22), 4663, 2000.
  • 34. GARCIA-FALCON M. S., PEREZ-LAMELA C., SIMALGANDARA J., Strategies for the extraction of free and bound polycyclic aromatic hydrocarbons in run-off waters rich in organic matter. Analytica Chimica Acta 508, 177, 2004.
  • 35. REILLEY K. A., BANKS M. K., SCHWAB A. P., Organic chemicals in the environment. Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J.Environ. Qual. 25, 212, 1996.
  • 36. MOON J.W., GOLTZ M. N., AHN K. H., PARK J. W., Dissolved organic matter effects on the performance of a barrier to polycyclic aromatic hydrocarbon transport by groundwater. J. of Contam. Hydrology 60, 307, 2003.
  • 37. ATANASSOWA I., BRUMMER G.W., Polycyclic aromatic hydrocarbons of anthropogenic and biopedogenic origin in a colluviated hydromorphic soil of Western Europe. Geoderma 120, 27, 2004.
  • 38. DURAND C., RUBAN V., AMBLES A., OUDOT J., Characterization of the organic matter of sludge: determination of lipids, hydrocarbons and PAHs from road retention/infiltration ponds in France. Environmental Pollution 132, 375, 2004.
  • 39. GIRAUD F., GIRAUD P., KADRI M., BLAKE G., STEINMAN R., Biodegradation of anthracene and fluoranthene by fungi isolated from an experimental constructed wetlands for wastewater treatment. Wat. Res. 35 (17), 4126, 2001.
  • 40. MUELLER K. E., SHANN J. R., PAH dissipation in spiked soil: Imacts of bioavalibility, microbial activity, and treees. Chemosphere 64, 1006, 2006.
  • 41. MALAWSKA M., BOJAKOWSKA I., WILKOMIRSKI B., Polycyclic aromatic hydrocarbons (PAHs) in peat and plants from selected peat-bogs in the north-east Poland. J. Plant Nutr. Soil Sci. 165, 286, 2002.
  • 42. WILD S. R., JONES K. C., Studies of the polynuclear aromatic hydrocarbon content of carrots (Daucus carota). Chemosphere 23, 243, 1991.
  • 43. SIMONICH S., HITES R., Organic pollutant accumulation in vegetation. Environ. Sci. Technol. 29, 2905, 1995.
  • 44. SHEPARD T., ROBERTSON G.W., GRIFFITHS D.W., BIRCH A. N. E., DUNCAN G. Effects of environment on the composition of epicuticular wax from kale and swede. Phytochemistry 40, 407, 1995.
  • 45. SANTIER S., CHAMEL A. Reassessment of the role of cuticular waxes in the transfer of organic molecules through plant cuticles. Plant Physiol. Biochem 36, 225, 1998.
  • 46. KROUMOVA A. B., WAGNER G. J. Mechanisms of elongation in the biosynthesis of fatty acid components of epicuticular waxes. Phytochemistry 50, 1341, 1999.
  • 47. JETTER R., SCHAEFFER S. Chemical composition of Prunus laurocerasus leaf surface. Dynamics changes of the epicuticular wax film during leaf development. Plant Physiol. 126, 1725, 2001.
  • 48. POBORSKI P. S. pollutant penetration through the cuticle. In: Schulte-Hostede S., Darral N., Blank L., Wellburn A, Editors, Air Pollution and Plant Metabolism. Elsevier Applied Science, London, pp. 36-54, 1988.
  • 49. KERFOURN C., GARREC J. P. Modifications in the alkane composition of cuticular waxes from spruce needles (Picea abies) and ivy leaves (Hedera helix) exposed to ozone fumigation and acid fog: comparison with needles from declaning spruce trees. Can. J.Bot. 70, 861, 1992.
  • 50. PERCY K. E., McQUATTIE C. J., REBBECK J. A. Effects of air pollutants on epicuticular wax chemical composition. In: Percy K. E., Cape J. N., Jagels R., Simpson C.J Editors, Air Pollutants and the leaf Cuticle. NATO ASI series, G36, Springer-Verlag, Berlin, pp. 67-79, 1994.
  • 51. NIEDERER M., MASHKA-SELIG A., HOHL C., Monitoring Polycyclic Aromatic Hydrocarbons (PAHs)and Heavy Metals in Urban Soil, Compost and Vegetation. Environ. Sci. & Pollut. Res. 2 (2), 83, 1995.
  • 52. TREMOLADA P., BURNETT V., CALAMARI D., JONES K., Spatial Distribution of PAHsin the U.K. Atmosphere Using Pine Needles. Environ. Sci. Technol.; 30, 3570, 1996.
  • 53. JONES K., GRIMMER G., JOHNSTON A., Changes in the polynuclear aromatic hydrocarbon content of wheat grain and pasture grassland over the last century from one site in the U.K. Sci. Tot. Environ. 78, 117, 1989.
  • 54. MENICHINI E., Urban air pollution by polycyckic aromatic hydrocarbons: levels and sources of varaiability. Sci.Total Environ. 116, 109, 1992.
  • 55. COLEMAN P., LEE R., ALCOCK R., JONES K., Observations on PAH, PCB, and PCDD/F trends in U.K. urban air, 1991-1995. Environ. Sci. Technol., 31 (7), 2120, 1997.
  • 56. BAKKER M., VORENHOUT M., SIJM D., KOLLOFFEL C., Dry deposition of atmospheric polycyclic aromatic hydrocarbons in three Plantago species. Environ. Toxicol. Chem. 18, 2289, 1999.
  • 57. BAKKER M., CASADO B., KOERSELMAN J., TOLLS J., KOLLOFFEL C., Polycyclic aromatic hydrocarbons in soil and plant samples from the vicinity of an oil refinery. The Science of the Total Environment 263, 91, 2000.
  • 58. YUNKER M. B., MACDONALD R. W., VINGARZAN R., MITSCHELL R. H., GOYETTE D., SYLVESTRE S., PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry 33, 489, 2002.
  • 59. MILUKAITE A., Flux of benzo[a]pyrene to a ground surface and its distribution in the ecosystem. Water, Air and soil Pollution 105, 471, 1998.
  • 60. MEHARG A. A., WRIGHT J., DYKE H., OSBORN D., Polycyclic aromatic hydrocarbons (PAH) dispersion and deposition to vegetation and soil following a large scale chemical fire. Environmental Pollution 99, 29, 1998.
  • 61. GSCHWEND P. M., HITES R. A., Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States. Geochim. Cosmochim. Acta 45, 2359, 1981.
  • 62. BUDZINSKI H., GARRIGUES P., CONNAN J., DEVILLERS J., DOMINE D., RADKE M., GOUDIN J., Alkylated phenanthrene distribution as maturity and origin indicators in crude oils and rock extracts. Geochim. Cosmochim. Acta 59, 2043, 1995.
  • 63. YUNKER M. B., MACDONALD R. W., Petroleum biomarker sources in suspended particulate matter and sediments from the Fraser River Basin and Strait of Georgia, Canada. Organic Geochemistry 34, 1525, 2003.
  • 64. BUCHELI T. D., BLUM F., DESAULES A., GUSTAFSSON O., Polycyclic aromatic hydrocarbons, black carbon, and molecular marcers in soils of Switzerland. Chemosphere 56, 1061, 2004.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-f6563b38-262c-4dbc-a96e-812a6e12bbbb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.