PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 27 | 3A |

Tytuł artykułu

Species-specific acclimation to strong shade modifies susceptibility of conifers to photoinhibition

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Photoinhibitory processes in the photosynthetic apparatus of the seedlings of Abies alba (Mill.), Picea abies (Karst.), and Pinus mugo (Turra) growing under strong shade (5 % of full solar irradiance) or full irradiance conditions were investigated in winter and spring using chlorophyll a fluorescence techniques. The extent of photoinhibition in needles as indicated by a decrease in maximum quantum yield of PS II photochemistry (Fv/Fm) depended on species, air temperature and acclimation to the light environment. Unexpectedly, shade-tolerant Abies alba was less affected by low-temperature photoinhibition compared to the other species. Fv/Fm recovered with increasing air temperature. During winter, the seedlings of Picea abies growing in shade showed higher Fv/Fm than those from full light. Non-photochemical quenching of fluorescence (NPQ) measured at the same levels of actinic light was higher in needles acclimated to full light except for Abies alba in February. Photosynthetic performance in term of ETR (apparent electron transferrate) was also higher in full light-acclimated needles. In April, at ambient temperature, recovery of PS II efficiency from the stress induced by illumination with saturating light was faster in the needles of Picea abies than in those of Abies alba. The shade-acclimated needles of Abies alba and Picea abies showed greater down-regulation of PS II induced by high light stress.

Wydawca

-

Rocznik

Tom

27

Numer

3A

Opis fizyczny

p.255-263,fig.,ref.

Twórcy

autor
  • August Cieszkowski Agricultural University of Poznan, Wojska Polskiego 69, 60-625 Poznan, Poland

Bibliografia

  • Adams III W. W., Demmig-Adams B. 1994. Carotenoid composition and down regulation of photosystem in three confer species during the winter. Physiol. Plant. 92: 451-458.
  • Adams III W.W., Zarter C.R., Ebbert V., Demmig-Adams B. 2004. Photoprotective strategies of overwintering evergreens. BioScience, 54: 41-49.
  • Anderson M.J., Park Y.-I., Chow W.S. 1997. Photoinactivation and photoprotection of photosystem II in nature. Physiol. Plant. 100: 214-223.
  • Genty B., Briantais J-M., Baker N.R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Bioch. Biophys. Acta, 990: 87-92.
  • Groom J. Q., Baker R. N. and Long P. S. 1991. Photoinhibition of holly (Ilex aquifolium) in the field during the winter. Physiol. Plant. 83: 585-590.
  • Han Q., Katahata S., Kakubari Y., Mukai Y. 2004. Seasonal changes in the xanthophyll cycle and antioxidants in sun-exposed and shaded parts of the crown of Cryptomeria japonica in relation to rhodoxanthin accumulation during cold acclimation. Tree Physiol. 24: 609-616.
  • Jifon L. J., Syversten P. J. 2003. Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves. Tree Physiol. 23: 119-127.
  • Kitao M., Lei T. T., Koike T., Tobita H., Maruyama Y. 2000. Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes. Plant Cell Environ. 23: 81-89.
  • Krause H. G., Koroleva Y. O., Dalling W. J., Winter K 2001. Acclimation of tropical tree seedlings to excessive light in simulated tree-fall gaps. Plant Cell Environ. 24: 1345-1352.
  • Lambers, H., Stuart Chapin III, F., Pons, L.T. 1998. Plant Physiological Ecology. Springer, pp. 34.
  • Lovelock E. C., Kursar A. T., Skillman B. J., Winter K 1998. Photoinhibition in tropical forest understorey species with short- and long-lived leaves. Funct. Ecol. 12: 553-560.
  • Maxwell K., Johnson N. G. 2000. Chlorophyll fluorescence - a practical guide. J. Exp. Bot. 51: 659-668.
  • Pocock H.T., Hurry V., Savitch V. L. and Huner A. P. N. 2001. Susceptibility to low-temperature photoinhibition and the acquisition of freezing tolerance in winter and spring wheat: The role of growth temperature and irradiance. Physiol. Plant. 113: 499-506.
  • Rascher U., Liebieg M., Luttge U. 2000. Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant, Cell and Environ. 23: 1397-1405.
  • Robakowski P., Wyka T. 2004. Down-regulation of PS II in needles of silver fir (Abies alba Mill.) seedlings growing under the canopy of European larch and Norway spruce. Zeszyty Problemowe Postępów Nauk Rolniczych 496: 421-431.
  • Senevirathna K W. M. A., Stirling M. C., Rodrigo L. H. V. 2003. Growth, photosynthetic performance and shade adaptation of rubber (Hevea brasiliensis) grown in natural shade. Tree Physiol. 23: 705-712.
  • Somersalo S., Krause H. G. 1990. Photoinhibition at chilling temperatures and effects of freezing stress on cold acclimated spinach leaves in the field. Physiol. Plant. 79: 617-622.
  • van Wijk K. J. and van Hasselt P. R. 1993. Photoinhibition of photosystem II in vivo is preceded by down-regulation through light-induced acidification of the lumen: Consequences for the mechanism of photoinhibition in vivo. Planta 189: 359-368.
  • Verhoeven S. A., Adams III W. W., Demmig-Adams B. 1996. Close relationship be-ween the state of xan- thophyll cycle pigments and photosystem II efficiency during recovery from winter stress. Physiol. Plant. 96: 567-576.
  • Weger H. G., Silim S. N., Guy R. D. 1993. Photo - synthetic acclimation to low temperature by western cedar seedlings. Plant Cell Environ. 16: 711-718.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-f21ef5c1-c412-4277-bc23-7f725517a0f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.