PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 08 | 1 |

Tytuł artykułu

Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The basic concept of the fluid-mosaic model of Singer and Nicolson, an essential point of which is that the membrane proteins are floating in a sea of excess lipid molecules organized in the lipid bilayer, may be misleading in understanding the movement of membrane components in biological membranes that show distinct domain structure. It seems that the lipid bilayer is an active factor in forming the membrane structure, and the lipid composition is responsible for the presence of domains in the membrane. The main role in the process of domain formation is played by cholesterol and sphingolipids. The results presented here show that in a binary mixture of cholesterol and unsaturated phospholipids, cholesterol is segregated out from the bulk unsaturated liquid-crystalline phase. This forms cholesterol-enriched domains or clustered cholesterol domains due to the lateral nonconformability between the rigid planar ring structure of cholesterol and the rigid bend of the unsaturated alkyl chain at double bond position. These cholesterol-enriched domains may be stabilized by the presence of saturated alkyl chains of sphingomyelin or glycosphingolipids, and also by specific proteins which selectively locate in these domains and stabilize them as a result of protein-protein interaction. Such lipid domains are called “rafts” and have been shown to be responsible both for signal transduction to and from the cell and for protein sorting. We also looked at whether polar carotenoids, compounds showing some similarities to cholesterol and affecting membrane properties in a similar way, would also promote domain formation and locate preferentially in one of the lipid phases. Our preliminary data show that in the presence of cholesterol, lutein (a polar carotenoid) may segregate out from saturated lipid regions (liquid-ordered phase) and accumulate in the regions rich in unsaturated phospholipids forming carotenoid-rich domains there. Conventional and pulse EPR (electron paramagnetic resonance) spin labeling techniques were employed to assess the molecular organization and dynamics of the raft-constituent molecules and of the raft itself in the membrane.

Wydawca

-

Rocznik

Tom

08

Numer

1

Opis fizyczny

p.147-159,fig.

Twórcy

autor
  • Jagiellonian University, Krakow, Poland
autor

Bibliografia

  • 1.Singer, SJ. and Nicolson, G.L. The fluid mosaic model of the structure of cell membranes. Science 175 (1972) 720-731.
  • 2.Barenholz, Y. Cholesterol and other membrane active sterols: from membrane evolution to “rafts”. Prog. Lipid Res. 41 (2002) 1-5.
  • 3.Brown, D.A. and London, E. Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164 (1998) 103-114.
  • 4.Brown, D.A. and London, E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275 (2000) 17221-17224.
  • 5.Mouristen, O.G. Theoretical models of phospholipid phase transitions. Chem. Phys. Lipids 57 (1991) 179-194.
  • 6.Ge, M., Field, K.A., Aneja, A., Holowka, D., Baird, B., and Freed, J.H. Electron spin resonance characterization of lipid ordered phase of detergent- resistant membranes from RBL-2H3 cells. Biophys. J. 77 (1999) 925-933.
  • 7.Kusumi, A. and Sako, Y. Cell surface organization by the membrane skeleton. Curr. Opin. Cell Biol. 8 (1996) 566-574.
  • 8.Edidin, M. Lipid microdomains in cell surface membranes. Curr. Opin. Struct. Biol. 7 (1997) 528-532.
  • 9.Hwang, J., Gheber, L.A., Margolis, L and Edidin, M. Domains in cell plasma membranes investigated by near-field scanning optical microscopy. Biophys. J. 74 (1998) 2184-2190.
  • 10.Subczynski, W.K., Antholine, W.E., Hyde, J.S. and Kusumi, A. Microimmiscibility and three-dimensional dynamic structure of phosphatidylcholine-cholesterol membranes: Translational diffusion of copper complex in the membrane. Biochemistry 29 (1990) 7936-7945.
  • 11.Gaidarov, I., Santini, F., Warren, R.A. and Keen, J.H. Spatial control of coated-pit dynamics in living cells. Nat. Cell Biol. 1 (1998) 1-7.
  • 12.Adams, C. and Nelson, W.J. Cytomechanics of cell adhesion structures. Curr. Opin. Cell Biol. 7 (1998) 457-463.
  • 13.Simons, K. and Ikonen, E. Functional rafts in cell membranes. Nature 387 (1997) 569-572.
  • 14.Kawasaki, K., Yin, J.-J., Subczynski, W.K., Hyde, J.S. and Kusumi, A. Pulse EPR detection of lipid exchange between protein-rich raft and bulk domains in the membrane: Methodology development and its application to studies of influenza viral membrane. Biophys. J. 80 (2001) 738-748.
  • 15.Edidin, M. Molecular associations and membrane domains. Curr. Top. Membr. Trans. 36 (1990) 81-93.
  • 16.Edidin, M. and Stroyanovski, I. Difference between the lateral organization of conventional and inositol phospholipid anchored membrane proteins. A further definition of micrometer scale membrane domains. J. Cell Biol. 112 (1991) 1143-1150.
  • 17.Brown, D.A. and Rose, J.K. Sorting of GPI-anchored proteins to glycolipid- enriched membrane subdomains during transport to the apical surface. Cell 68 (1992) 533-544.
  • 18.Brown, D.A. and London, E. Function of lipid rafts in biological membranes. Annu. Rev. Cell Biol. 14 (1998) 111-136.
  • 19.Ikonen, E. Roles of lipid rafts in membrane transport. Curr. Opin. Cell Biol. 13 (2001) 470-477.
  • 20.Van Meer, G. Cell biology. The different hues of lipid rafts. Science 296 (2002) 855-857.
  • 21.Smaby, J.M., Momsen, M., Kulkami, V.S. and Brown, R.E. Cholesterol-induced interfacial area condensations of galactosylceramide and sphingomyelins with identical acyl chains. Biochemistry 35 (1996) 5696- 5704.
  • 22.Simons, K. and Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1(2000) 31-39.
  • 23.Hueber, A.O., Bernard, A.M. Herincs, Z., Couzinet, A. and He, H.T. An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Reports 3 (2002) 190-196.
  • 24.Montoya, M.C., Sancho, D., Bonello, G., Collette, Y., Langler, C., He, H.T., Aparicio, P., Alcover, A., Oliver, D. and Sanchez-Madrid, F. Role of ICAM-3 in the initial interaction of T lymphocytes and APCs. Nature Immunol. 3 (2002) 159-167.
  • 25.Varma, R. and Mayor, S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394 (1998) 798-801.
  • 26.Kenworth, A.K. and Edidin, M.J. Distribution of a glycosylpho-sphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 angstrom using imaging fluorescence resonance energy transfer. Cell Biol. 142 (1998) 69-84.
  • 27.Pralle, A., Keller, P., Florin, E.-L., Simons, K. and Hörber, J.K.H. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148 (2000) 997-1008.
  • 28.Subczynski, W.K. and Kusumi, A. Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy. Biochim. Biophys. Acta - Biomembranes (in press, 2003).
  • 29.Kusumi, A., Subczynski, W.K. and Pasenkiewicz-Gierula, M. Spin-label studies on phosphatidylcholine-cholesterol membranes: effects of alkyl chain length and unsaturation in the fluid phase. Biochim. Biophys. Acta 854 (1986) 307-317.
  • 30.Pasenkiewicz-Gierula, M., Subczynski, W.K. and Kusumi, A. Rotational diffusion of steroid molecules in phosphatidylcholine membranes: fluid phase microimmiscibility in unsaturated phosphatidylcholine-cholesterol membranes. Biochemistry 29 (1990) 4059-4069.
  • 31.Subczynski, W.K., Hyde, J.S. and Kusumi, A. Effect of alkyl chain unsaturation and cholesterol intercalation on oxygen transport in membranes: a pulse ESR spin labeling study. Biochemistry 30 (1991) 8578-8590.
  • 32.Subczynski, W.K., Wisniewska, A., Yin, J.-J., Hyde, J.S. and Kusumi, A. Hydrophobic barriers of lipid bilayer membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol. Biochemistry 33 (1994) 7670-7681.
  • 33.Pasenkiewicz-Gierula, M., Subczynski, W.K. and Kusumi, A. Influence of phospholipid unsaturation on the cholesterol distribution in membranes. Biochimie 73 (1991) 1311-1316.
  • 34.Kusumi, A., Subczynski, W.K. and Hyde, J.S. Oxygen transport parameter in membranes as deduced by saturation recovery measurements of spin-lattice relaxation times of spin labels. Proc. Natl. Acad. Sci U.S.A. 79 (1982) 1854-1858.
  • 35.Subczynski, W.K., Hyde, J.S. and Kusumi, A. Oxygen permeability of phosphatidylcholine-cholesterol membranes. Proc. Natl. Acad. Sci U.S.A. 86 (1989) 4474-4478.
  • 36.Subczynski, W.K., Antholine, W.E., Hyde, J.S. and Petering, D.H. Orientation and mobility of copper square planar complex in a lipid bilayer. J. Am. Chem. Soc. 109 (1987) 46-52.
  • 37.Subczynski, W.K., Renk, G.E., Crouch, R.K., Hyde, J.S. and Kusumi, A. Oxygen diffusion-concentration product in rhodopsin as observed by a pulse ESR spin labeling method. Biophys. J. 63 (1992) 573-577.
  • 38.Subczynski, W.K., Hopwood, L.E. and Hyde, J.S. Is the mammalian cell plasma membrane a barrier to oxygen transport? J. Gen. Physiol. 100 (1992) 69-87.
  • 39.Subczynski, W.K., Lewis, R.N.A., McElhaney, R.N., Hodges, R.S., Hyde, J.S. and Kusumi, A. Molecular organization and dynamics of l-palmitoyl-2-oleoylphosphatidylcholine bilayers containing a transmembrane a-helical peptide. Biochemistry 37 (1998) 3156-3164.
  • 40. Ashikawa, I., Yin, J.-J., Subczynski, W.K., Kouyama, T., Hyde, J.S. and Kusumi, A. Molecular organization and dynamics in bacteriorhodopsin-rich reconstituted membranes: Discrimination of lipid environments by the oxygen transport parameter using a pulse ESR spin-labeling technique. Biochemistry 33 (1994) 4947-4952.
  • 41. Bramley, P.M. and Mackenzie, A. Regulation of Carotenoid Biosynthesis. Curr. Top. Cell. Regul. 29 (1988) 291-343.
  • 42. Rohmer, M., Bouvier, P. and Ourisson, G. Molecular evolution of membranes: Structural equivalents and phylogenetic precursors of sterols. Proc. Natl. Acad. Sci. U.S.A. 76 (1979) 847-851.
  • 43. Subczynski, W.K., Markowska, E., Gruszecki, W.I. and Sielewiesiuk, J. Effect of polar carotenoids on dimyristoylphosphatidylcholine: A spin-label study. Biochim. Biophys. Acta 1105 (1992) 97-108.
  • 44. Subczynski, W.K., Markowska, E. and Sielewiesiuk, J. Spin-label studies on phosphatidylcholine-polar carotenoid membranes: Efects of alkyl chain length and unsaturation. Biochim. Biophys. Acta 1150 (1993) 173-181.
  • 45. Wisniewska, A. and Subczynski, W.K. Effect of polar carotenoids on the shape of the hydrophobic barrier of phospholipid bilayers. Biochim. Biophys. Acta 1368 (1998) 235-246.
  • 46. Likhtenstein, In: Spin Labeling Methods in Molecular Biology, Izdatielstwo Nauka, Moscow, 1974, 37-65.
  • 47. East, J.M., Melville, D. and Lee, A.G. Exchange rates and numbers of annular lipids for the calcium and magnesium ion dependent adenosine triphosphate. Biochemistry 24 (1985) 2615-2623.
  • 48. Ryba, N.J.P., Horváth, L.I., Watts, A. and Marsh, D. Molecular exchange at the lipid-rhodopsin interface: spin-label electron spin resonance studies of rhodopsin-dimyristoylphosphatidylcholine recombinants. Biochemistry 26 (1987) 3234-3240.
  • 49. Horváth, L.I., Brophy, P.J. and Marsh, D. Exchange rates at the lipid- peptide interface of myelin proteolipid protein studied by spin-label electron spin resonance. Biochemistry 27 (1988) 46-52.
  • 50. Marsh, D. Stoichiometry of lipid-protein interaction and integral membrane protein structure. Eur. Biophys. J. 26 (1997) 203-208.
  • 51. Harder, T., Scheiffele, P., Verkade, P. and Simons, K.L. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141 (1998) 929-942.
  • 52. Scheiffele, P., Rietveld, A., Wilk, T. and Simons, K. Influenza viruses select ordered lipid domains during budding from the plasma membrane. J. Biol. Chem. 274 (1997) 2038-2044.
  • 53. Gennis, R.B. Biomembranes. Molecular Structure and Function, Springer-Verlag, New York, 1989, 112.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-f09bc03d-e9ff-4550-8ec7-b51ec3b4e5a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.