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Ab s t r a c t. Since in situ soils seldom behave like 
remolded laboratory soils or disturbed field samples, it 
is important to 'identify' or 'calibrate' the engineering 
properties of field soil by means of in situ tests. A re
sponse surface methodology based on an orthogonal 
regression in the parameter space has been developed 
to 'identify' engineering properties of any material 
based on in-situ tests. The proposed methodology was 
verified for the case of a two parameter hypo-elastic 
model for soil as well as a complex five parameter 
model for soil which includes nonlinear material beha
vior in elastic range, yield based on Drucker-Prager 
yield criteria and associated plastic flow upon yield. 
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face methodology 

INTRODUCfiON AND REVIEW OF 
LITERA TIJRE 

One of the challenges in the design of 
an off-road vehicle is to equip it with a trac
tion device (tire or track) which can develop 
high traction efficiently (i.e. optimum trac
tive efficiency) while deterring soil corn pac
tion. Even an increase of one percentage 
point in the tractive efficiency leads to an 
annual savings of over 100 million Iiters (about 
25 million gallons) of fuel in U.S. alone [7]. 
On the other hand, soil compaction has been 
recognized as a worldwide problem with seri
ous implications on agricultural sustainability 
[10]. Although, certain amount of soil corn
paction may even be desirable for some 
crops under certain environmental condi
tions (optimum soil compaction), excessive 

soil compaction can lead to diminished soil 
porosity, reduced water infiltration, increased 
resistance to root penetration, increased til
lage energy requirements, decreased biological 
activity, and a reduction in crop yield (11]. 
A necessary pre-requisite for the successful 
design of a traction device is a sound mathe
matical model for the soil-traction interaction 
process. This interaction is an extremely 
complex, dynamic process. A key ingredient 
of such a model is a constitutive relation
ship which describes the stress-strain beha
vior for soil. Schafer et aL [13] stated that 
an accurate description of soil constitutive 
relationship is necessary for the integrity 
and robustness of the model. Soil is perhaps 
one of the most complex material from an 
engineering point of view (4]. 

Numerous constitutive models are cur
rently available for soils. Among these are 
the elasticity models, higher order nonlinear 
elasticity models, hypoelasticity models, plas
ticity models and visco-plasticity models. 
Desai [4], Desai and Siriwardane (5] and 
Chen and Baladi (3] have discussed these 
models and their applicability to a specific 
loading situation in detail. These constitu
tive models require material parameters 
which describe the elastic behavior of soil, 
onset of yield and subsequent plastic flow, 
material hardening or softening rules etc. 
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Typically these parameters are determined 
using laboratory tests. Often remolded soils 
are employed in the laboratory tests which 
may not behave like field soils. Even if field 
samples are obtained, these samples under
go disturbances during excavation and test
ing, and may not behave like in situ soil 
under actual loading conditions in field. It is 
preferable to determine the soil material 
parameters based on undisturbed in situ 
tests. The technique of obtaining material 
parameters based on actual system response 
is called 'back analysis', 'inverse solution', 
'identification', or 'calibration procedure'. 
The process of 'calibrating' actual field re
sponse to model behavior is expected to 
'identify' the material parameters which can 
accurately predict system response in sub
sequent analysis which utilize the same con
stitutive model. 

The back analysis technique has been 
successfully used in geomechanics in stu
dying tunnelling problems in rocks and in 
investigating settlement problems [15). If a 
closed form solution exists for the under
lying differential equation describing the 
physical problem, then back analysis to ob
tain the material parameters involves opti
mizing the difference between the analytical 
and experimental responses. However, most 
real life problems in geomechanics are either 
geometrically or materially nonlinear, and an 
analytical solution may not exist. In such 
cases a numerical procedure such as a finite 
element method (FEM) may be used to ob
tain solutions to the governing differential 
equation. When finite element analysis is 
used, back analysis may take one of the two 
forms: 1) inverse method, 2) direct method. 

In the inverse method nodal values of 
displacements and stresses obtained by a 
FEM technique are used as known boun
dary conditions and the unknown displace
ments and stresses are eliminated from the 
global matrix equation by reduction. This 
inverse technique is quite sensitive to ex
perimental error and may not converge at all 
in some cases [2,8,12]. The direct approach 

results in more accurate parameter values. 
In the direct method, nodal values of the re
sponse are computed using a finite element 
method for a set of assumed parameter 
values. The actual values of response at the 
same nodes can be obtained by field or in situ 
tests. The difference between the finite ele
ment predictions and experimentally measured 
values at these nodes are optimized to obtain 
soil parameters. The direct method can be 
computationally very expensive since at each 
iteration a new FEM analysis with updated 
parameters needs to be carried out [2]. 

Our objective is to develop a methodo
logy to determine material properties of 
soil based on a given constitutive law using 
in situ field tests. A response surface will be 
built based on the outcome of a FEM ana
lysis using an orthogonal regression tech
nique. The response surface will be a function 
of unknown material parameters. This re
sponse surface will be used to predict the 
response corresponding to the experimental 
values (i.e. at the same load and nodal 
point). The main advantage of our tech
nique is that once the response surface is 
created using FEM analysis, there is no 
need to go back to the FEM analysis. Du
ring the optimization technique only the 
response surface is used. This approach is 
expected to make this technique computa
tionally very efficient. 

MATIIEMATICAL MODELING 

Response surface development 

Let us consider a general material con
stitutive model for soil (or any other material) 
consisting of m parameters: Pp p2, p3, ••• ,pm. 

For example, if we select a nonlinear constitu
tive model with extended Drucker -Prager yield 
criteria and associated flow rule, then six par
ameters will be involved [1 ]. These parame
ters are p 1 =logarithmic bulk modulus, ~e; p2= 
Poisson's ratio, v; p3= yield surface shape fac
tor (i.e. related to the third invariant of stress), 
K; p 4 =cohesion, c; p 5 = internal angle of fric
tion, <I>; P6 =initial void ratio, e. The last 
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parameter, e is really related to initial stress 
condition. The response of a system to ap
plied load depends on its geometry, material 
properties and the load itself. If the applied 
load and the geometry are fixed (i.e. for a 
given geometry and loading), the system re
sponse is a function of material constants 
used in the constitutive equation. There is a 
function lP = lP (p1,p2,p3, ···Pm) which rep-

resents the system response as the material 
properties used in the constitutive equation 
are changed. Unless the underlying dif
ferential equation describing the response 
of the real system is linear, this function is 
seldom known explicitly. One of the goals 
of this study is to find an approximate rep
resentation for this real response, lP. This 
approximation to the real response is termed 
the response surface, F in this study. One 
convenient way of determining the response 
surface F is to determine the variation ofF 
as one of the material parameter, pi is 

changed while all other parameters are held 
constant. Let this response function for the 
single variable pi be fi(pJ If we repeat this 

process for each of the m material parame-
ters (i.e. for i= 1,2 ...... , m), then one easy 
way of obtaining the response surface is 
simply to multiply these component equa
tions,f(pi), i.e.: 

where F- response surface,.t; -a component 

equation which is a function of parameter pi 

only, C- constant. 
In general such a representation is ac

curate only in a small region due to geome
tric and/or material nonlinearities in the 
system. The error is expected to be small if 
the range of pi is small for each of the m 

parameters. 
Thus the process of building the response 

surface requires holding all relevant factors 
except parameter pi constant (i.e., geometry, 

loading, all other material propertiespj,j=1,2 

..•. m but j ~i)" and determining the compo
nent equationf(pJ Once all the component 

equations are determined, Eq. (1) can be 
used to build the response surface. It 
should be recognized that for each given ge
ometry and loading there will be one re
sponse surface. In the case of plate sinkage 
tests, for a given plate size and load level 
there will be a response surface. Since there 
are m unknown parameters, at least m field 
measurements are needed to solve for these 
m parameters. In practice, it is preferable to 
have more than m points (i.e. n>m) so that 
the m parameters can be determined by an 
optimization scheme. Since each unrepli
cated in situ measurement corresponds to a 
given geometry and loading, each of these 
experimental values correspond to a point 
(or contour) on one response surface. Thus 
each of the n unreplicated measurements 
will correspond to a point (or contour) on 
one of then distinct response surfaces. Note 
that more than one observations at a given 
geometry and loading refer to the same 
point (or contour) on a response surface 
that corresponds to that geometry and load
ing. Thus replicates do not provide addi
tional equations to solve for the parameters, 
but help in controlling experimental error. 
Suppose we have n distinct combination of 
geometry and load level there will be n re
sponse surfaces, Fi' i=1,2 .... n. From Eq. (1) 

we get: 

FI = Clf11f12 ... flm 

F2 = C2f2/22 ... f2m 

F = C f f ... f 
n n nl n2 nm 

(2) 

where .t;j is the component equation corre

sponding to response i and parameter p .. 
IJ 

and Ci is the constant corresponding to the 

same response surface i. Since each of the 
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same response surface i. Since each of the 
material parameter has its own range, some 
properties such as Poisson's ratio, v vary in 
a very narrow range (0.0 to 0.5) whereas 
others such as Young's modulus, E may 
vary over a very large range (thousands of 
kPa). From the point of optimization as 
well as orthogonal regression, it is prefe
rable to map each of the parameter to the 
same range through scaling. Each of the un
known parameter was nondimensionalized 
and mapped to vary from -1 to +1 by the 
following transformation: 

where p: - nondimensional value of pa
l 

rameter i, pi - mid point value of parameter i, 

p. - upper bound value of parameter i, 
1 max 

p . . - lower bound value of parameter i. 
IIDID 

The value of the mid point is zero, 
upper bound is 1 and the lower bound is -1 
for each of the nondimensionalized pa
rameter. 

Let/'ij be the nondimensionalized com
ponent equation corresponding to the non
dimensionalized parameter pj and test 

condition i. The relationship between J;j 
and J;j is given by: 

(4) 

where F. - computed value of the response 
I 

surface Fi for test i when all the parameters 

are set equal to the mid point value of zero. 
Moreover, it is convenient if we non

dimensionalize the system response to 
avoid numerical problems in the analysis. 
The nondimensionalized response surface is 
given by: 

where F; - nondimensionalized response 

surface values corresponding to the ith test 
condition, C; - correction constant, ap-

proximately equal to 1. 
The data for the creation of response 

surfaces can be obtained from any analytical 
or numerical models. We propose to use an 
orthogonal regression technique to deter

mine the component equation J;j' The use 

of an orthogonal regression technique not 
only provides an equation to accurately pre
dict the overall system response, but also 
provides an accurate estimate of regression 
parameters (9,14]. An accurate estimation 
of regression parameters is essential in 
order to identify the unknown material 
parameters by optimization. The function 

t;i is an orthogonal polynomial of par-

ameter p j and is given by: 

• k • 
f .. = ~a. D _r 

IJ r=O 11" J 
(6) 

The values of air• r=1,2 ... k are deter

mined by using model response (analytical 
or numerical such as FEM) and orthogonal 
regression techniques. Only requirement for 
the use of orthogonal regression in curve fit

ting is that pj be equally spaced during 

model evaluation while all other material 
parameters be held at the mid point values. 
The theoretical value of the correction con

stant, C; in Eq. (5) is one. However, when 

curve fitting is employed to determine the re
gression coefficients, air' the value of this 
correction constant may be slightly different 

than one. The actual value of C; can be 

found by employing a linear regression 

technique between F; and lf;l'J;2 ... f;m)· 

To accomplish this linear regression, model 
response at orthogonal points used in buil
ding the response surface and some additional 
random points may be used. 
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Higher order correction 

As stated previously, in general the or
thogonal response surface is expected to be 
close to the true model response only near 
the mid point and the parameter axes (p; 
axis). As we start moving away from the 
origin and the parameter axes, the two sur
faces will depart from each other. At large 
distances from the origin and the parameter 
axes this error can be significant. The rela
tion between the nondimensionalized true 
response, $; and the response surface, F; is 

given by: 
. . 

$ . =F.+ E. (7) 
I I I 

where e. is the error in our approximation, 
I 

q,: =I!. 
I I 

By assuming that the function $; is 

'well behaved' (i.e. analytic everywhere in 
the parameter space), this function can be 
represented in a Taylor series as follows: 

(8) 

where coefficients, b., b .. , b .. k, etc. for i=1,2, 
I IJ IJ 

... m; j = 1,2 ... m; k= 1,2, ..... m are respectively 
related to the partial derivatives of the func
tion, I! with respect top:, p:., p:.k etc. at the 

I I U U 
origin (mid point). Eq. (8) reduces to{:. 

IJ 

alongp: axis, i.e.: 
J 

~ 1 b. ,. b '2 b '3 
lij = + JPJ + jfj + jjfj + .. . (9) 

Using Eqs (5) and (7-9) we get: 

Ej=d1jJ~~+ ... +dirrf~~ +d2Jl'-R~+ ... + 

where 'd 's are constant coefficients related 
to the cross derivatives of q,: at the origin. It 

I 

should be noted that strictly from a theore
tical point of view, an orthogonal response 
surface can be created based on Eq. (8) 
rather than Eq. (5) which relies on the pro
duct of component equations. In such a 
case, very little difference is expected be
tween the real surface and orthogonal re
sponse surface. If nine equidistant values of 
each of the parameterp; ,i=1,2, ........ ,m are 

used in evaluating real surface, 9m model 
evaluations will be needed. If m=2 then 81 
model evaluations are needed. On the other 
hand, ifm=6, then an astronomical531441 
model evaluations are necessary. In most 
real problems, where FEM evaluation of a 
complex model is necessary, using Eq. (8) 
as a basis for the response surface is infea
sible except for the case of a two parameter 
model. The response surface represented by 
Eq. (5) requires only [8*m+1] model evalu
ations (i.e., for m=2, 17 model evaluations 
are necessary whereas for m =6, 49 model 
evaluations are necessary). 

Second order correction 

In practice, Eq. (10) will be truncated at 
some convenient point. The truncated func
tion is an approximation to ei and is called 

the correction function, Ei. If we limit our

selves to only the product of the type p;pj 
for i=1,2, .... , m and j=1,2, .... , m, but i:F.j, 
then Ei will be a second order function. This 

second order function, Ei contains ne min 

unknowns given by: 

_ m(m-1) (11) 
nemin- 2 

In order to determine the second order 
correction function, Ei model responses are 

obtained at ne additional check points, where 

ne is greater or equal to ne min' The additional 

check points can be selected randomly or in 
a deterministic way. It can be shown that 
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the form of the second order correction is: 

m-1 m , , (12) 
E.=~ ~e. (j-1)(2m-j)+k- ·Pfk 

I J~k=j+l1 ' 2 J 

The 'e' coefficients can be derived from 
a set of ne linear equations with ne min un-

knowns. A multiple linear regression tech
nique based on Eq. (12) can be used to 
estimate the 'e' coefficients. Modification to 
the response surfaces can be accomplished 
by adding Eq. (12) to Eq. (5). The resulting 
improved response surface is given by: 

i=1,2,2, ... ,n (13) 

It is important to emphasize that the 
second order correction neglects all higher 
orders of ei. There may be some situations 

where these higher order corrections are 
necessary. In such cases, it is possible that the 
second order correction may even give 
poor results. In situations like these, use 
of Eq. (5) may give more accurate results 
than Eq. (13). More discussion on this im
portant issue will follow when we consider 
examples. 

Third order correction 

In order to get more accurate results to 
the function Ei, we may consider the third 

order correction. The third order correction 
consists of all cross product terms of the 
parameters upto and including the third 
order terms. The third order function Ei is 

the summation of ne min combination of 

cross products, therefore we have ne min un

known coefficients. It can be shown that the 
number of combinations, ne minis given by: 

3m(m-1) +.![(m-1)(m-2):}:}2] 
2 2 2 j=l 

(14) 

The function Ei for the third order cor

rection is: 

m-1 m 
E.= _L '\"e. ( · k)iP~ + 

I j=l k~+ll,a mJ, J 

m-2m-1 m 
L ~ L ei (3 (mj k l)pjp;p; + 
j=lk=j+ll=k+1' . ' 

m m 
~ ~ '2. 
LJ kL.J=

1 
ei, y (mj,k)Pj Pk (1-ajk) 

j=l 

where 

{
1 j=k 

0 jk = 2 j:#k 

(j-1)(2m- ') 
a (mj,k) =l 1 + k-j 

{3(mj,k,l) m(~-1)+ 

- 12 [2m(m-j-1)+j] + L r2 + 1! '-1 j-1 l 
2 2 r=l 

(15) 

(16) 

(17) 

k-~+1 (2m-k+j-2-)+1-k (18) 

( ',k) _ m(m-1) + y nlJ - 2 

i [(m-1¥m-2)+1;'] + 
(m-1)(}-1) +a 

k<j 
k>j 

(19) 

(20) 

The 'e' coefficients can be derived from a 
set of ne (ne 2: ne min) linear equations with 

ne min unknowns. A multiple linear regression 

technique based on Eq. (15) can be used to 
estimate the 'e' coefficients. The modified re
sponse surface is given by Eq. (13). 

Estimation of material parameters 

Let Ui be one of the n independent ex

perimental observations. In order to make 
uj consistent with~. we transform it into a 

nondimensional value, u;. The relation 
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between uj and u; is given by: 

. U. 
U. =.,; 

1 r. 

(21) 

I 

The subtraction ofEq. (21) from Eq. (13) 
yields a set of n nonlinear equations in m un
knowns: 

. . 
F- U =0 

1 1 

. . 
F -U =0 

2 2 

F - U =0 
n n 

(22) 

In general Eq. (22) is seldom an equality 
due to the p~sence of approximation as 
well as experfutental errors. One method of 
determining engineering properties of the 
material involves optimizing sum of squares 
of residuals, SSR defined by: 

l n • • 2! SSR = min L (F. - U.) 
i=1 I I 

(23) 

The expression for the SSR in Eq. (23) 
is used as an objective function and a non
linear optimization technique is used to 
solve for material parameters. 

Transformation of experimental results 

As explained previously, the accuracy 
of function~ may be high in some region 

on the response surface and low in another 
region. This implies that the estimated pa
rameters will be high in accuracy some
times and poor in accuracy some other 
times. Generally speaking, the inaccuracy 
increases as we move away from the origin 
and parameter axes. At the origin, the 
nondimensionalized ~ has a value of unity 

(cf. Eq. (5)). In some sense, as the values of 

~ change from unity the difference between 

the real and the response surface values 
(both corrected and uncorrected) tend to 
increase. Thus the values of~ can be used 

as a measure of this departure. This argu
ment suggests that there exists a function 
<I>'i =<l>'i(Fi). Inverse of this transformation, 

Fi =Fi(<I>'i) is of particular interest in our 
case. This relationship can be used as a 
transformation rule for experimental values 
by replacing the real response, <I>'i by ex

perimental value, l!i. If we denote the 
transformed experimental value which 

corresponds to Fi by U*i, then we have 

U*i = U*i(l!i). The transformation function 
can be obtained by conducting a polynomial 
regression between F'i and <I>'i in some ac
ceptable range, <l>i min and <l>i max' thus: 

ij = 2: g. <t>\ (24) 
J J 

where 'g.'s are regression coefficients. The 
J 

corresponding transformation rule for the 
experimental values is given by: 

k ,. (25) 
u*i = 2: g. uJi 

j=O J 

The value of U*i calculated from Eq. 
(25) can be used for replacing Ui in Eq. (22) 

and (23). This modification may significant
ly improve the accuracy of the parameters 
obtained through optimization. Following 
examples study illustrates the methodology. 

VERIFICATION OF TI-lE PROPOSED 
METI-IODOLOGY 

Two example problems from soil me
chanics were selected to illustrate the me
thodology as well as provide some verification 
to the methodology. The first example is a 
simple two parameter hypo-elastic model 
for soil. This example was selected to illus
trate the methodology since the real as well 
as the orthogonal response surface can be 
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plotted in a 3-D space. A more complex five 
parameter soil model was chosen as the second 
example to illustrate the application of the 
methodology to very complicated problems. 

Two parameter model 

A simple two parameter material model 
is selected to illustrate the main features of 
this technique. A cylindrical bar or soil co
lumn under uniaxial compression is con
sidered. The bar is made of a hypoelastic 
material with an incremental constitutive 
law given by [5]): 

da = (E
0 

+ E
1
a) de (26) 

where E
0 

and E
1 

are the material parame

ters of interest in this model, a is axial stress 
(positive in compression), and c is axial 
strain. Integration of Eq. (26) yields: 

u = i, If" ;,E'al (27) 

where u - deformation of the bar (the con
traction), L - length of the undeformed bar. 

Eq. (27) will be used as a basis to build 
the response surface, Fi. The response sur
face will be developed in the following 
range of parameters E0 and E1: 

E0 min =689.5 kPa (100 psi) 

Elmin=lO.O 

E
0 

.d . =3792.1 kPa (550 psi) m1 pomt 
EOmax=6894.8 kPa (1000 psi) 

E
1 

=100.0 max 

El mid point = 55·0 

The nondimensional parameters (Eq. (3)) 
for this case are: 

E
. 2(Eo-Eo mid point) d 
o E E an 

E' 
1 

Omax- 0 min 

2(E1-E1 mid point) 

El max-£1 min 

(28) 

The response at the mid point of the 

parameters is (i.e. origin): 

L F. = .... .-------
1 El mid point 

In (Eo mid point +El mid pontail 
EO mid point 

(29) 

The nondimensional representation of 
the real surface is obtained by dividing Eq. 
(27) by Eq. (29). The plot of the nondimen
sionalized real surface obtained by using an ap
plied stress of a=689.5 kPa (100 psi), is 
given in Fig. la. The response surface for 
this case which includes second order cor
rection is: 

wheref'1 andf'2 are orthogonal polynomial 

functions of E '
0 

and E '
1 

respectively and ei 

is second order correction coefficient. The 
function ['1'['2, and the coefficient ei were 

found as described previously. The approxi
mation of the surface without the second 
order correction is shown in Fig. lb, and 
the error of this approximation is shown 
in Fig. le. The response surface describes 
the real function with reasonable accuracy 
except at the corners. The error is particu
larly high as both parameters (E

0 
and E

1
) 

approach their minimum values. 
The second order correction for this 

case was obtained by using the edge points, 
the mid points of the lower and upper range 
for each parameter - a total of 16 combina
tions. The second order correction decreases 
the error in the wnes of high error (Fig. Id). 
However, this correction to the response 
surface increased the error in some other 
regions where the error was negligible pre
viously. In rest of the area the second order 
correction is not enough and a transforma
tion of the data using Eq. (25) is necessary. 

A study of the error distribution shows 
three different possibilities. In some areas 
the orthogonal surface represents the real 
surface with negligible error. In some other 
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Fig 1. Real function (a), orthogonal response surface (b), error without any correction (c), and error when second 
order correction is included (d) in Eo- E1 space, respectively. 

regions the second order correction im
proves the prediction significantly. In rest of 
the area the second order correction is not 
enough and a transformation of the data 
using Eq. (25) is necessary. The graph of 
real surface versus orthogonal response sur
face without any correction is shown in Fig. 2a, 
and the real surface versus the response sur
face with second order correction is given in 
Fig. 2b. From Fig. 2a it is clear that the or
thogonal surface without any correction 
corresponds to the real surface very well 
(slope 1:1) until a response value of 1.5 is 
attained. From about a value of 1.5, the real 

surface and response surface points are no 
longer on a 1:1 line. On the other hand, 
from Fig. 2b we see that the real surface 
points correspond very well (slope 1:1) with 
response surface points with second order 
correction from a response surface value of 
1.5 until about 2.7. Beyond a value of 2.7 
real surface points do not correspond (no 
more a 1:1 line) to the response surface 
points with or without any correction. This 
portion of the graph corresponds to only 3 % 
of the parameter range. Even in this range 
there is a curvilinear relationship between 
the real surface and response surface points 
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Fig. 2. Real surtace versus response surtace without any 
correction (a) and using second order correction (b). 

(i.e. transformation Eq. (25) is valid). 
In order to determine the material 

parameters (E0 and E1), seven distinct re-

sponse surfaces were created using seven 
different applied stresses. The stress values 
used were 344.7 kPa (50 psi), 517.1 kPa (75 
psi), 689.5 kPa (100 psi), 861.8 kPa (125 
psi), 1034.2 kPa (150 psi), 11206.6 kPa (175 
psi) and 1379.0 kPa (200 psi). The adequacy 
of the method is illustrated by 13 examples. 
One example is based on a randomly selected 
values of parameters, E0 and Er The other 

twelve examples were based on parameter 
values along the diagonal, E'o=E'1. The Eq. 
(27) was used to calculate the real response. 
These values were used instead of the ex
perimental values in the optimization step. 
Since there is no experimental error in this 
case, we should, in principle, get exact 
values of the assumed parameters back. In
accuracy in the results is solely due to the 
inadequacy of the response surface. Five 

different initial guess values of the parame
ters were considered in the nonlinear op
timization process for each one of these 
examples. The first initial guess values were 
the mid point values of the parameters, 
three others were selected randomly and 
the fifth one was the exact solution. 

The transformation equation was esti
mated using 50 random points of the real 
surface using Eq. (24) as a basis for regres
sion. The results of the simulations are 
listed in Table 1. These examples clearly 
show that transformation of experimental 
data is necessary to obtain good estimates 
of the parameters, especially in the region 
where the real and response surfaces depart 
from each other significantly. Additional 
simulations were conducted along the diag
onal line (E'o=E'l) along which maximum 
error is expected to occur. The maximum 
error of the prediction of each of the pa
rameters in the whole range in all the 13 
cases studied did not exceed 3 %, if the 
transformation technique was employed 
with second order correction as necessary. 
It should be emphasized that even in the 
worst case (at and near the minimum values 
of E0 and E1), the error in parameter esti-

mation was no more than 3 %. Moreover, 
nonuniqueness of the solution was not a 
concern in this two parameter case. 

Effect of including the third order cor
rection (TOC) was also examined for this 
two parameter case. The form of the third 
order correction is: 

Figure 3a shows the effect of including 
third order correction on the response sur
face. Inclusion of third order correction 
further reduces the error in the zone of 
high error (i.e., in the 3 % region where E0 

and E1 values are near or at their minimum). 

Figure 3b is a plot of error when the third 
order correction is included. Comparison of 
this figure with Figs le and ld shows that 
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although the response surface which in
cludes third order correction reduces the 
error in the zone of high error, the error in 
other regions does not necessarily decrease. 
In fact, the error increases slightly in some 
areas. A plot of real surface versus response 
surface shown in Fig. 4 indicates that all 
points are in the vicinity of 1:1 line. A 
comparison of Figs 4 with Figs 2a and 2b 
reveals that the third order correction is 
mainly beneficial in the region where the 
response was much greater t.han center 
point response (1.5). In the region where 
the normalized response is less than 1.5, in
clusion of third order correction leads to 
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Fig. 3. Plot of onhogonal response surface (a) and Fig. 4. Plot of real surface versus response surface 
error (b) in Eo-Et space when a third order correction when a third order correction was included for a two 
was included. parameter hypo-elastic model for soil. 

Tab I e 1. Results of simulation studies 

Eo (kPa) Et 
Sim. No. 

Actual Predicted %Error Actual Predicted %Error 
Remarks 

t 5666 5585 1.34 61.8 61.84 0.07 Random points 
2 5666 6453 13.9 61.8 62.2t 0.66 soc• 
3 5666 56t7 0.86 61.8 61.65 0.24 With transformation 
4 1310 751 42.7 t9 20 5.32 E'o=E't =0.8 

5 1310 1066 18.6 t9 20 5.34 soc• 
6 1310 1290 1.5 t9 t8.3 3.9 With transformation 
7 1310 t347 2.8 t9 t9.02 0.09 soc•and transfor-

•second order correction . 
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less error than inclusion of second order 
correction. However, uncorrected response 
surface predicts the real surface better than 
the case in which the third order correction 
is included. Since even in the worst situ
ation the error in estimating the parameters 
is less than 3 %, we can conclude that inclu
sion of third order correction generally im
proves the response surface and reduces the 
possibility of large error. It should be noted 
that this particular soil model shows large in
creases in response when E0 and E 1 values 

are very small compared to all other values of 
E0 and Er This makes it difficult to come of 

with a response surface which is good every
where in the region. In fact, even very 
complicated models do not show such sin
gularities or large changes in a small region 
as we will see with a five parameter 
Drucker-Prager model described below. 

A five parameter nonlinear elastic soil 
model with extended Druker-Prager 
yield criteria 

The elasto-plastic constitutive material 
model with Druker-Prager yield criteria is 
widely used in geomechanics [6]. Here we 
explore the feasibility of identifying mate
rial parameters of this fairly complex ma
terial model using the proposed methodology. 
Actual field data will not be considered. 
Analysis of the field data to identify materi
al parameters will be dealt in a later study. 
A commercial finite element program, ABA

ous was used in this study to obtain model 
response. The orthogonal response surfaces 
were built using six parameters logarithmic 
bulk modulus, K; Poison's ratio, v; yield sur
face shape factor, K; cohesion, C; internal 
friction angle, et> and void ratio, e. The last 
parameter, void ratio, is not a material par
ameter and is usually known from field tests. 

Two plates of diameters 50 mm (2 in.) 
and 100 mm (4 in.) were simulated, with ap
plied load ranging from 137.9 kPa (20 psi) 
to 1034.2 kPa (150 psi) in increments of 
68.9 kPa (10 psi), a total of 14 tests for each 
plate. A response surface was built for each 

of those tests in the following parameter 
range: 

M in Max Mid No. of 
point points 

" 0.01 0.05 0.03 9 
V 0.05 0.37 0.21 9 
K 0.60 1.0 0.8 11 
c 9.0 21.0 15.0 9 
41 22.5 47.5 35.0 11 
e 0.6 1.6 1.1 11 

Figure 5 is a plot of nondimensional 
plate sinkage versus the nondimensional 
values of parameter et> (angle of internal 
friction) for a 100 mm (4 in.) plate sub
jected to 1034.3 kPa (150 psi) pressure. 
Note that all other parameters are held at 
their respective mid-point values. This re
sponse curve was obtained using an ortho
gonal regression technique. The very high 
R2 value (coefficient of multiple determina
tion) indicates that this curve represents the 
real response very accurately. Figure 5 is 
typical of all response curves obtained by 
orthogonal regression analysis. In all cases 
the orthogonal response curve for any pa
rameter (K, m, K, Cor <I>) was an excellent rep
resentation of the real response curve for that 
parameter. The graph of the real surface 
versus the orthogonal response surface 
without any correction for a 100 mm (4 in.) 
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Fig. S. Nondimensional values of plate sinkage versus 
nondimensional values of parameter <p for a 100 mm 
(4 in.) plate subjected to 551.6 kPa (80 psi) pressure. 
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plate subjected to an applied load of 551.6 
kPa (80 psi) is shown in Fig. 6a. This graph 

consists of 55 orthogonal points and an addi

tional 60 random points. Figure 6a reveals 
that under high load the orthogonal response 
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Fig. 6. Orthogonal response surface versus real surtace 
for a 100 mm (4 in.) plate subjected to 551.6 kPa (80 
psi) pressure without higher correction (a) when a 
second (b) and third (c) order correction was employed. 

surface begins to depart from the real sur
face when nondimensionalized displacements 
exceed about 1.4. Figures 6b is similar to 
Fig. 6a except that a second order correc
tion has been added to the orthogonal re
sponse surface. This figure indicates only 
marginal improvement over Fig. 6a. Per
haps a higher order correction is beneficial 
especially at high plate loads. Figure 6c is 
similar to Figs 6a and 6b, except that a third 
order correction has also been added to the 
orthogonal response surface. Inclusion of 
third order correction has resulted in an or
thogonal response surface which is almost 
identical to the real surface even at high 
loads. This indicates that an orthogonal re
sponse surface with third order correction 
can be used reliably to predict the real re
sponse without having to resort to FEM 
analysis. 

Since we are dealing with a nonlinear 
problem the solution is not necessarily unique. 
Following recommendations may be used as 
a guide for selecting the best solution from 
several optimum solutions resulting from the 
presence of 'local minimums': 

1. Discard all solutions that have a sig
nificantly high SSR (cf. Eq. (23)). 

2. Use more than one geometry (i.e., 50 
mm and 100 mm diameter plates) and look 
lor optimum for each of the geometries and 
.tlso the combination of all the geometries. 
Accept those solutions which are approxi
mately same in all cases. From a practical 
point of view two plates will be sufficient. 

3. Reject any solution in which more 
than one parameter hit the bounds of the 
search domain. The probability of more 
than one parameter hitting the bounds si
multaneously is low. If in fact, if this really 
is the case for several initial guesses, and 
the above two criteria will be met. 

4. In spite of these steps, if more than 
llne solutions are obtained we recommend 
using Eq. (23) to compute SSR. Unfortu
nately, this requires the use of model evalu
ation at these competing optimal solutions. 
But number of computations needed are 
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only a few (i.e. once for each plate for each 
competing solution). 

To explore the suitability of this method 
to identify the material parameters of this 
complex constitutive equation for soil, we se
lected five different random sets of parameters 
and tried to re-predict those parameters using 
the response surface methodology. The ran
dom sets of parameters selected are: 

Point IC V K c cl> e 

1 0.027 0.238 0.954 17.333 24.717 1.139 
2 0.017 0.246 0.823 19.160 23.932 1.436 
3 0.013 0.309 0.967 18.745 30.589 0.905 
4 0.020 0.175 0.935 19.759 30.548 1.048 
5 0.021 0.176 0.960 12.563 46.666 1.379 

1\vo sets of orthogonal response sur
faces were built - one for a 50 mm plate and 
the other is the for a 100 mm plate. The 
parameters were back calculated using the 
response surfaces for the 50 mm plate by it
self, and by combining the response surfaces 
of both 50 mm and 100 mm plate together. 
The transformation technique was em
ployed for all cases (Eq. (25)). Seven dif
ferent initial guess values were used: one 
is the exact solution, the second is the 
'mid point' values of the parameters and 
the remaining five are the following ran
dom points: 

Point IC V K c cl> 

6 0.018 0.200 0.754 9.948 41.311 
7 0.011 0.167 0.833 20.006 38.263 
8 0.034 0.223 0.795 10.173 41.889 
9 0.017 0.072 0.642 9.523 24.854 
10 0.020 0.214 0.651 11.842 24.163 

A quasi-Newton optimization technique 
was employed. The results of the optimiza
tion process are listed in Table 2. For the 
first four cases, reasonably good results 
were obtained. Errors in estimation of the 
parameters were very low in many of the 
parameters, but occasionally large errors up 
to about 25 % did occur. The results for the 
case of random point 5 was, however, very 
discouraging. Very high SSR values were 
obtained for all the seven initial guess values. 
1\vo or three parameters hit the bounds of 
the search region. Criteria number 1 and 3 
lead to the rejection of all solutions ob
tained. However, the selection criteria listed 
above clearly indicated that the true opti
mum was not obtained. A higher order cor
rection to the orthogonal response surface 
may be beneficial in this case. 

The second order correction based on 
20 random points increased the accuracy of 
the results only with point 1 in this study. 
Table 3 lists the effect of including the se
cond order correction on point 1. Significantly 

T a b I e 2. Predicted results using the orthogonal response surface without second order correction 

"error v error K error C error cl> error 
Point Plate size SSE 

% 

1 50 mm 1.27 3.88 3.76 21.16 1.20 0.0480 
50 and 100 mm 10.52 8.28 1.01 19.23 0.68 0.0550 

2 50 mm 3.88 3.44 10.61 9.60 1.13 0.0329 
50 and 100 mm 0.08 9.44 13.29 9.60 2.01 0.0362 

3 50 mm 9.32 5.78 2.70 11.24 8.29 0.0323 
50 and 100 mm 17.85 18.59 3.41 4.60 11.78 0.0836 

4 50 mm 3.61 11.07 6.04 4.84 1.85 0.0199 
50 and 100 mm 13.77 25.03 3.41 1.51 1.73 0.0879 
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better results were obtained when a second 
order correction was included. Error in es
timating C went down from 21.16 % to 0.54 % 
while other parameters were predicted with 
about the same accuracy as before. How
ever, second order correction was not benefi
cial in general (i.e., for point 2 to 4). Perhaps 
a third order correction to the orthogonal 
response surface is necessary. In order to 
explore the effect of random noise on the 
optimization procedure, a random noise 
derived from a normal distribution with 
mean zero and variance 0.01 was added to 
the numerical displacement values (non
dimensionalized) derived from the FEM ana
lysis. This technique of adding a random, 
normal noise was thought to simulate the 
experimental noise in real data. Results of 
this analysis are given in Tables 3 and 4. In
terestingly enough, the presence of noise did 
not have an adverse effect on the parameters 
identified. Although some of the parameters 
were less accurate, others were more accurately 

predicted in the presence of noise. The 
range of error in the estimated parameters 
were about the same as in the case where the 
true model response was used. 

Effect of including third order correc
tion to the orthogonal response surface was 
investigated using 50 mm (2 in.) plate only. 
Following five sets of random parameter 
values were selected: 

Point K v K C ~ e 

1 0.027 0.238 0.954 17.333 24.717 1.139 
2 0.017 0.246 0.823 19.160 23.932 1.436 
3 0.012 0.177 0.960 16.702 27.858 0.606 
4 0.047 0.151 0.712 15.712 26.949 1.881 
5 0.036 0.261 0.981 14.980 44.539 1.145 

The first two points were same as be
fore. The last three points were chosen from 
random sets of points to cover the parameter 
range better. Seven different initial guesses 
were used to seek the optimum solution. 
These initial guesses values were the same 
as the ones selected before. Table 5 lists the 

T a b I e 3. Predicted results for point 1 when second order correction to the orthogonal response surface was 
employed 

K error v error Kerror Cerror ~error 
Plate size SSE 

% 

50 mm 2.57 1.92 3.45 0.54 2.68 0.0030 
50 mm + random noise 0.65 4.82 4.82 3.05 4.13 0.0073 

T a b I e 4. Predicted results for the case when random noise was added to the model results to simulated field data 

K error v error Kerror C error ~error 

Point Plate size SSE 
% 

1 50 mm 5.30 13.37 4.82 15.92 1.51 0.0480 
50 and 100mm 3.51 1.16 4.82 14.11 0.85 0.0237 

2 50 mm 5.52 16.63 21.51 4.60 1.52 0.0793 
50 and 100mm 5.72 17.49 15.80 8.60 1.81 0.0665 

3 50 mm 17.85 18.59 3.41 4.60 11.78 0.0836 
50 and 100 mm 18.47 15.96 4.55 12.03 1.58 0.0764 

4 50 mm 14.27 25.04 6.95 0.57 7.48 0.0935 
50 and 100 mm 9.44 12.94 6.95 1.55 1.68 0.0310 
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results of optimization. In general, the re
sults look very promising. Some of the rea
sonable solutions have 20 to 30% error in 
parameters K and C (point 1 and 5). How
ever, if SSE and SSR are used as a guide to 
select the best solution, in general a solu
tion with very small errors in parameter 
values gets selected. Note that the maxi
m urn error is 18.17 % for parameter K 
corresponding to point 3. We have found in 
our simulation studies that the real re
sponse is not very sensitive to parameter K 
if it is greater than 0.6. AsK changes from 
0.6 to 1.0 (which is the range of interest), 
response changes by less than 10 %. In the 
neighborhood of K= 1.0, the response is 
very flat. In view of this, we feel that this is a 
reasonable solution. 

During the course of this study it was 
realized that the range of K selected (0.01 to 
0.05) in building the response surface as 
explained above was not wide enough to 
simulate observed field response. It was neces
sary to widen the range of K (0.01 to 0.15) 
and reconstruct the response surfaces based 
on this new wider range of K . We conducted 
simulation runs to verify the methodology 
using this wider range of K also. Since third 
order correction (TOC) to the orthogonal 
response surface appears to be necessary to 
obtain reasonable results, we will only ex
plore the situation in which TOC is added 

to the orthogonal response surface. Once 
again we chose five different random sets of 
parameter values to be re-predicted using 
the optimization technique. These random 
sets of points are as follows: 

Point K v K C ~ e 

1 0.127 0.132 0.938 19.406 26.984 0.630 
2 0.011 0.343 0.611 16.813 31.305 0.755 
3 0.056 0.146 0.946 16.512 28.985 1.095 
4 0.022 0.093 0.776 13.893 41.297 1.049 
5 0.083 0.233 0.884 16.867 34.856 1.123 

The initial guess values selected were 
the 'exact solution', 'mid point values' and a 
set of five randomly selected parameter 
values listed below: 

Point K V K c ~ e 

6 0.356 0.238 0.889 10.791 24.717 34.579 
7 0.131 0.297 0.996 45.693 23.932 23.932 
8 0.039 0.116 0.889 16.271 27.858 30.728 
9 0.110 0.088 0.610 20.472 26.949 23.566 
10 0.014 0.360 0.907 16.979 44.539 23.778 

The re-pridiction process was carried 
out using 50 mm (2 in.) plate, 100 mm (4 in.) 
plate and a combination of 50 mm (2 in.) 
and 100 mm (4 in.) plates. For each case we 
used the exact solution and the mid point 
parameter values as initial guesses. The five 
randomly selected guess points were used 
only for point 1 for both plates, and also the 
combination of plates. However, for the 
100 mm ( 4 in.) pia te all seven initial guess 

T a b I e S. Predicted results using the orthogonal response surface developed for narrow range of K when third 
order correction was employed 

Reaso- K error v error Kerror Cerror '{>error 
Point Plate size nab le 

% 
SSE SSR 

solution 

0.95 0.22 0.70 2.27 0.05 0.00066 0.00491 
2in 2 5.60 8.54 22.31 21.16 4.67 0.10715 0.00055 

3 10.05 10.56 10.73 4.87 1.38 0.03531 0.00121 

2 2in 0.16 1.11 . 0.25 0.63 0.42 0.00019 0.00033 
3 2in 2.01 6.44 18.17 2.03 6.93 0.04280 0.00012 
4 2in 0.28 1.11 0.53 0.96 0.16 0.00025 0.00049 

1 6.15 5.32 1.94 1.25 2.34 0.00770 0.00050 
5 2in 2 6.60 6.79 3.42 22.34 6.21 0.06390 0.00011 

3 1.80 1.03 17.45 29.66 1.65 0.11915 0.00043 
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values were use to seek the optimum solu
tion for each of the five random set of par
ameter values. 

The results of this analysis are listed in 
Table 6. An examination of the results in
dicates that the reasonable solution with 
minimum SSE usually leads to good solu
tion except for point 4. Point 4 results in 
very large errors for both parameters K and 
p,. However, an examination of SSE indi
cates that none of the solutions are reaso
nable. Our suspicion is that for this values 
of K and p,, the soil is extremely hard and 
deforms very little. Under these circum
stances, the nonlinear elastic model for soil 
with Drucker-Prager yield criteria is per
haps inappropriate. 

CONCLUSIONS 

Based on this study we reached the 
following conclusions: 

1. A response surface methodology 
based on an orthogonal regression in the 
parameter space has been developed to 
'identify', or 'calibrate' engineering proper
ties of any material based on in situ tests. 
The orthogonal response surface was cre
ated from an analytical or numerical(such 
as FEM) solution to the underlying dif
ferential equation of the system which 
utilizes these engineering properties in a 
constitutive equation. A transformation 
technique was developed to map the model 
response or experimental da ta on to the 
response surface. 

T a b I e 6. Predicted results using the orthogonal response surface developed for wide range of K when third 
order correction was employed 

Reaso- K error v error K error C error '{J error 
Point Plate size nable 
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4.64 
4.10 
3.50 

1.00 
1.38 
3.07 
1.00 
0.21 
1.86 
1.54 

6.2I 
0.76 

I6.90 
0.76 

1.14 
2.65 

32.12 
28.45 

11.84 
13.18 
11.84 

0.24 
0.47 
2.43 
0.83 
0.06 

SSE SSR 

0.01639 0.00001 
0.02071 0.000004 
0.03531 0.00001 
0.03557 0.00004 
0.00947 0.00004 
0.00737 0.00011 
0.00578 0.00011 

0.06390 0.00011 
0.02713 0.00003 
0.16681 0.00075 
0.00149 0.00183 

0.15936 0.00974 
0.01722 0.00239 
0.23056 0.00065 
0.11396 0.00570 

0.74363 0.00012 
1.83600 0.00095 
2.37638 0.00012 

0.00797 0.00001 
0.00121 0.000003 
0.06957 0.000004 
O.OOI49 0.000004 
0.009I9 0.00002 
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2. The proposed methodology worked 
very well (i.e. very little error) in the case of 
a two parameter hypo-elastic model for soil. 
When the second order correction was in
cluded with a transformation of data very 
small errors resulted in parameter estimation. 
Inclusion of third order correction to the or
thogonal response surface reduced the chance 
oflarge error in parameter values. 

3. When this technique was used in the 
presence of random noise, the predicted 
parameters were found to be insensitive to 
the noise. 

4. When this methodology was applied 
to a complex five parameter model for soil 
(nonlinear elastic behavior with Drucker
Prager yield criteria and associated plastic 
flow upon yield), it appeared to work rea
sonablywell. A third order correction to the 
orthogonal response surface appears to be 
necessary to obtain reasonably good solu
tion. When both the logarithmic bulk mo
dulus (K) and Poisson's ratio (}.l) are low, 
soil becomes very rigid and the methodo
logy will not yield a good solution. Under 
such circumstances, perhaps the soil model 
chosen is inappropriate. 
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