PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | 48 | 3 |

Tytuł artykułu

Effect of nuclear matrix attachment regions on transgene expression in tobacco plants

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Matrix attachment regions (MARs) are thought to participate in the organization and segregation of independent chromosomal loop domains. Although there are sev­eral reports on the action of natural MARs in the context of heterologous genes in transgenic plants, in our study we tested a synthetic MAR (sMAR) with the special property of unpairing when under superhelical strain, for its effect on reporter gene expression in tobacco plants. The synthetic MAR was a multimer of a short sequence from the MAR 3 end of the immunoglobulin heavy chain (IgH) enhancer. This sMAR sequence was used to flank the β-glucuronidase (GUS) reporter gene within the T-DNA of the binary vector pBI121. Vectors with or without the sMARs were then used to transform tobacco plants by Agrobacterium tumefaciens. Transgenic plants containing the sMAR sequences flanking the GUS gene exhibited higher levels of transgene expression compared with transgenic plants which lacked the sMARs. This effect was observed independently of the position of the sMAR at the 5 side of the re­porter gene. However, variation of the detected transgene expression was significant in all transformed plant populations, irrespective of the construct used.

Wydawca

-

Rocznik

Tom

48

Numer

3

Opis fizyczny

p.637-646,fig.

Twórcy

autor
  • Adam Mickiewicz University, Miedzychodzka 5, 60-371 Poznan, Poland
autor

Bibliografia

  • 1.Peach, C. & Velten, J. (1991) Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol. Biol. 17, 49-60.
  • 2.Walters, D.A., Vetsch, C.S., Potts, D.E. & Lundquist, R.C. (1992) Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Mol. Biol. 18, 189-200.
  • 3.Gasser, S.M., Amati, B.B., Cardenas, M.E. & Hofmann, J.F.-X. (1989) Studies on scaffold attachment sites and their relation to genome function. Int. Rev. Cytol. 119, 57-96.
  • 4.Boulikas, T. (1993) Nature of DNA sequences at the attachment regions of genes to the nuclear matrix. J. Cell Biochem. 52, 14-22.
  • 5.Laemmli, U.K., Kaes, E., Poljak, L. & Adachi, Y. (1992) Scaffold-associated regions: cis-acting determinants of chromatin structural loops and functional domains. Curr. Opin. Genet. Dev. 2, 275-285.
  • 6.Breyne, P., Van Montagu, M., Depicker, A. & Gheysen, G. (1992) Chracterization of a plant scaffold attachment region in a DNA fragment that normalizes transgene expression in tobacco. Plant Cell4, 463-471.
  • 7.Mielke, C., Kohwi, Y., Kohwi-Shigematsu, T., & Bode, J. (1990) Hierarchical binding of DNA fragments derived from scaffold-attached regions: Correlation of properties in vitro and function in vivo. Biochemistry 29, 7475-7485.
  • 8.Benham, C., Kohwishigematsu, T. & Bode, J. (1997) Stress-induced duplex DNA destabilization in scaffold/matrix attachment regions. J. Mol. Biol. 274, 181-196.
  • 9.Kohwi-Shigematsu, T. & Kohwi, Y. (1997) High unwinding capability of matrix attachment regions and ATC-sequence context-specific MAR-binding proteins; in Nuclear Structure and Gene Expression (Bird, R.C., ed.) pp. 111-144, Academic Press, San Diego.
  • 10.Kohwi-Shigematsu, T. & Kohwi, Y. (1990) Torsional stress stabilizes extended base unpairing in supressor sites flanking immunoglobin heavy chain enhancer. Biochemistry 29, 9551-9560.
  • 11.Bode, J., Kohwi, Y., Dickinson, L., Joh, T., Klehr, D., Mielke, C. & Kohwi-Shigematsu, T. (1992) Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 255, 195-197.
  • 12.Sambrook, J., Maniatis T. & Fritsch, E.F. (1989) Molecular Cloning. A Laboratory Manual. 2nd Edn., Cold Spring Harbor Laboratory.
  • 13.Murashige, T. & Skoog, F. (1962) A revised medium for rapid growth and bio-essays with tobacco tissue cultures. Physiol. Plant. 15, 473-497.
  • 14.Bevan, M.W. (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 12, 8711-8721.
  • 15.Horsh, R.B., Fry, J., Hoffmann, N., Niedermeyer, J., Rogers, S.G. & Fraley, T.F. (1988) Leaf disc transformation; in Plant Molecular Biology Manual, pp. 1-9, Kluwer Academic Publisher, London.
  • 16.Chomczynski, P. & Sacchi, N. (1987) Single step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction. Anal. Biochem. 162, 156-159.
  • 17.Jefferson, R., Kavanagh, T. & Bevan, M. (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 13, 3901-3907.
  • 18.Bradford, M.M. (1976) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
  • 19.Dong, J.-Z. & McHughen, A. (1993) Transgenic flax plants from Agrobacterium mediated transformation: Incidence of chimeric regenerants and inheritance of transgenic plants. Plant Cell 91, 139-148.
  • 20.Nap, J.-P., Kiezer, P. & Jansen, R. (1993) First-generation transgenic plants and statistics. Plant Mol. Biol. Rep. 11, 156-164.
  • 21.Razin, S.V. (1999) Chromosomal DNA loops may constitute basic units of the eukaryotic genome organization and evolution. Crit. Rev. Eukaryot. Gene Expr. 9, 279-283.
  • 22.Paul, A.L. & Ferl, R.J. (1999) Higher-order chromatin structure: Looping long molecules (Review). Plant Mol. 41, 713-720.
  • 23.Nardozza, T.A., Quigley, M.M. & Getzenberg, R.H. (1996) Association of transcription factors with the nuclear matrix. J. Cell Biochem. 61, 467-477.
  • 24.Van der Geest, A.H.M., Hall, G.E., Spiker, S. & Hall, T.C. (1994) The beta-phaseolin gene is flanked by matrix attachment regions. Plant J. 6, 413-423.
  • 25.Paul, A.L. & Ferl, R.J. (1993) Osmium tetroxide footprinting of a scaffold attachment region in the maize Adh1 promoter. Plant Mol. Biol. 22, 1145-1151.
  • 26.Holmes-Davis, R. & Comai, L. (1998) Nuclear matrix attachment regions and plant gene expression (review). Trends Plant Sci. 3, 91-97.
  • 27.Van der Geest, A.H.M. & Hall, T.C. (1997) The beta-phaseolin 5' matrix attachment region acts as an enhancer facilitator. Plant Mol. Biol. 33, 553-557.
  • 28.Koncz, C., Martini, N., Mayerhofer, R., Koncz-Kalman, Z., Korber, H., Redei, G.P. & Schell, J. (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc. Natl. Acad. Sci. U.S.A. 86, 8467-8471.
  • 29.Dietz, A., Kay, V., Schlake, T., Landsmann, J. & Bode, J. (1994) A plant scaffold attached region detected close to a T-DNA integration site is active in mammalian cells. Nucleic Acids Res. 22, 2744-2751.
  • 30.Iglesias, V.A., Moscone, E.A., Papp, I., Neuhuber, F., Michalowski, S., Phelan, T., Spiker, S., Matzke, M. & Matzke, A.J.M. (1997) Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell 9, 1251-1264.
  • 31.Schoeffl, F., Schroder, G., Kliem, M. & Rieping, M. (1993) An SAR-sequence containing 395 bp-DNA fragment mediates enhanced, gene- dosage-correlated expression of a chimaeric heat shock gene in transgenic tobacco plants. Transgenic Res. 2, 93-100.
  • 32.Allen, G.C., Hall, G.E., Childs, L.C., Weissinger, A.K., Spiker, S. & Thompson, W.F. (1993) Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell5, 603-613.
  • 33.Vain, P., Worland, B., Kohli, A., Snape, J.W., Christou, P., Allen, G.C. & Thompson, W.F. (1999) Matrix attachment regions increase transgene expression levels and stability in transgenic rice plants and their progeny. Plant J. 18, 233-242.
  • 34.Allen, G.C., Hall, G., Michalowski, S., Newman, W., Spiker, S., Weissinger, A.K. & Thompson, W.F. (1996) High-level transgene expression in plant cells: Effects of a strong scaffold attachment region from tobacco. Plant Cell 8, 899-913.
  • 35.Ulker, B., Allen, G.C., Thompson, W.F., Spiker, S. & Weissinger, A.K. (1999) A tobacco matrix attachment region reduces the loss of transgene expression in the progeny of transgenic tobacco plants. Plant J. 18, 253-263.
  • 36.Able, J.A. & Godwin, I.D. (2001) Sorghum transformation using the Rb7 matrix attachment region (MAR): In vitro and in planta analysis'. Field Crops Res. in press.
  • 37.Chinn, A.M. & Comai, L. (1996) The heat shock cognate 80 gene of tomato is flanked by matrix attachment regions. Plant Mol. Biol. 32, 959-968.
  • 38.Mlynarova, L., Loonen, A., Heldens, J., Jansen, R.C., Keizer, P., Stiekema, W.J. & Nap, J.P. (1994) Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrix-associated region. Plant Cell 6, 417-426.
  • 39.Liu, J.W. & Tabe, L.M. (1998) The influences of two plant nuclear matrix attachment regions (MARs) on gene expression in transgenic plants. Plant Cell Physiol. 39, 115-123.
  • 40.Mlynarova, L., Jansen, R.C., Conner, A.J., Stiekema, W.J. & Nap, J.P. (1995) The MAR- mediated reduction in position effect can be uncoupled from copy number-dependent expression in transgenic plants. Plant Cell 7, 599-609.
  • 41.Mlynarova, L., Keizer, L.C.P., Stiekema, W.J. & Nap, J.-P. (1996) Approaching the lower limits of transgene variability. Plant Cell 8, 1589-1599.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-e7ce5643-387a-4d3a-a574-1c1b1b6f415d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.