PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 15 | 1 |

Tytuł artykułu

Establishing and functional characterization of an HEK-293 cell line expressing autofluorescently tagged beta-actin [pEYFP-actin] and the neurokinin type 1 receptor [NK1-R]

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study focused on establishing and making a comprehensive functional characterization of an HEK-293-transfected cell line that would coexpress the enhanced yellow fluorescent protein-actin (pEYFP-actin) construct and the neurokinin type 1 receptor (NK1-R), which is a member of the seven transmembrane (7TM) receptor family. In the initial selection procedure, the cloning ring technique was used alone, but failed to yield clones with homogenous pEYFP-actin expression. Flow cytometry sorting (FCS) was subsequently used to enrich the pEYFP-actin-expressing subpopulation of cells. The enzyme-linked immunosorbent assay (ELISA), FCS and quantitative real-time reverse transcription/polymerase chain reaction (RT-PCR) were then employed to monitor the passage-dependent effects on transgene expression and to estimate the total β-actin/pEYFP-actin ratio. NK1-R was characterized via radioactive ligand binding and the second messenger assay. The suitability of the pEYFP-actin as a marker of endogenous actin was assessed by colocalizing pEYFP-actin with rhodamine-phalloidine-stained F-actin and by comparing receptor- and jasplakinolide-induced changes in the actin cytoskeleton organization. These experiments demonstrated that: i) both constructs expressed in the generated transfected cell line are functional; ii) the estimated pEYFP-actin: endogenous β-actin ratio is within the limits required for the functional integrity of the actin filaments; and iii) pEYFP-actin and rhodamine-phalloidine-stained F-actin structures colocalize and display comparable reorganization patterns in pharmacologically challenged cells.

Wydawca

-

Rocznik

Tom

15

Numer

1

Opis fizyczny

p.55-69,fig.,ref.

Twórcy

autor
  • Veterinary Faculty, Institute of Anatomy, Histology and Embryology, Gerbiceva 60, SI-1000 Ljubljana, Slovenia
autor
autor
autor
autor

Bibliografia

  • 1. Janmey, P.A. The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol. Rev. 78 (1998) 763-781.
  • 2. Luttrell, L.M. Big G, little G: G proteins and actin cytoskeletal reorganization. Mol. Cell. 9 (2002) 1152-1154.
  • 3. Cotton, M. and Claing, A. G protein-coupled receptors stimulation and the control of cell migration. Cell. Signal. 21 (2009) 1045-1053.
  • 4. Ludin, B., Doll, T., Meili, R., Kaech, S. and Matus, A. Application of novel vectors for GFP-tagging of proteins to study microtubule-associated proteins. Gene 173 (1996) 107-111.
  • 5. Ludin, B. and Matus, A. GFP illuminates the cytoskeleton. Trends Cell. Biol. 8 (1998) 72-77.
  • 6. Lippincott-Schwartz, J. and Patterson, G.H. Development and use of fluorescent protein markers in living cells. Science 300 (2003) 87-91.
  • 7. Yoon, Y., Pitts, K. and McNiven, M. Studying cytoskeletal dynamics in living cells using green fluorescent protein. Mol. Biotechnol. 21 (2002) 241-250.
  • 8. Bohme, I. and Beck-Sickinger, A.G. Illuminating the life of GPCRs. Cell. Commun. Signal. 7 (2009) - in press (doi:10.1186/1478-811X-7-16).
  • 9. Arun, K.H., Kaul, C.L. and Ramarao, P. Green fluorescent proteins in receptor research: an emerging tool for drug discovery. J. Pharmacol. Toxicol. Methods 51 (2005) 1-23.
  • 10. Volovyk, Z.M., Wolf, M.J., Prasad, S.V. and Rockman, H.A. Agoniststimulated β-adrenergic receptor internalization requires dynamic cytoskeletal actin turnover. J. Biol. Chem. 281 (2006) 9773-9780.
  • 11. Ganguly, S., Pucadyil, T.J. and Chattopadhyay, A. Actin cytoskeletondependent dynamics of the human serotonin1A receptor correlates with receptor signaling. Biophys. J. 95 (2008) 451-463.
  • 12. Barnes, W.G., Reiter, E., Violin, J.D., Ren, X.R., Milligan, G. and Lefkowitz, R.J. β-Arrestin 1 and Gαq/11 coordinately activate RhoA and stress fiber formation following receptor stimulation. J. Biol. Chem. 280 (2005) 8041-8050.
  • 13. Vogt, S., Grosse, R., Schultz, G. and Offermanns, S. Receptor-dependent RhoA activation in G12/G13-deficient cells: genetic evidence for an involvement of Gq/G11. J. Biol. Chem. 278 (2003) 28743-28749.
  • 14. Le Page, S.L., Bi, Y. and Williams, J.A. CCK-A receptor activates RhoA through Gα12/13 in NIH3T3 cells. Am. J. Physiol. Cell. Physiol. 285 (2003) 1197-1206.
  • 15. Gohla, A., Offermanns, S., Wilkie, T.M. andSchultz, G. Differential involvement of Gα12 and Gα13 in receptor-mediated stress fiber formation. J. Biol. Chem. 274 (1999) 17901-17907.
  • 16. Pagliaro, L. and Praestegaard, M. Transfected cell lines as tools for high throughput screening: a call for standards. J. Biomol. Screen. 6 (2001) 133-136.
  • 17. Herget-Rosenthal, S., Hosford, M., Kribben, A., Atkinson, S.J., Sandoval, R.M. and Molitoris, B.A. Characteristics of EYFP-actin and visualization of actin dynamics during ATP depletion and repletion. Am J. Physiol. Cell. Physiol. 281 (2001) 1858-1870.
  • 18. McFarland, D.C. Preparation of pure cell cultures by cloning. Methods Cell. Sci. 22 (2000) 63-66.
  • 19. Martini, L., Hastrup, H., Holst, B., Fraile-Ramos, A., Marsh, M. and Schwartz, T.W. NK1 receptor fused to β-arrestin displays a singlecomponent, high-affinity molecular phenotype. Mol. Pharmacol. 62 (2002) 30-37.
  • 20. Kubale, V., Abramovič, Z., Pogačnik, A., Heding, A., Šentjurc, M. and Vrecl, M. Evidence for a role of caveolin-1 in neurokinin-1 receptor plasmamembrane localization, efficient signaling, and interaction with β-arrestin 2. Cell. Tissue Res. 330 (2007) 231-245.
  • 21. Ramsay, D., Kellett, E., McVey, M., Rees, S. and Milligan, G. Homo- and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences. Biochem. J. 365 (2002) 429-440.
  • 22. Vrecl, M., Anderson, L., Hanyaloglu, A., McGregor, A.M., Groarke, A.D., Milligan, G., Taylor, P.L. and Eidne, K.A. Agonist-induced endocytosis and recycling of the gonadotropin-releasing hormone receptor: effect of β -arrestin on internalization kinetics. Mol. Endocrinol. 12 (1998) 1818-1829.
  • 23. Bubb, M.R., Senderowicz, A.M., Sausville, E.A., Duncan, K.L. and Korn, E.D. Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J. Biol. Chem. 269 (1994) 14869-14871.
  • 24. Holst, B., Zoffmann, S., Elling, C.E., Hjorth, S.A. and Schwartz, T.W. Steric hindrance mutagenesis versus alanine scan in mapping of ligand binding sites in the tachykinin NK1 receptor. Mol. Pharmacol. 53 (1998) 166-175.
  • 25. Bubb, M.R., Spector, I., Beyer, B.B. and Fosen, K.M. Effects of jasplakinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations. J. Biol. Chem. 275 (2000) 5163-5170.
  • 26. Cramer, L.P. Role of actin-filament disassembly in lamellipodium protrusion in motile cells revealed using the drug jasplakinolide. Curr. Biol. 9 (1999) 1095-1105.
  • 27. Ostrom, R. S. and Insel, P.A. The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br. J. Pharmacol. 143 (2004) 235-245.
  • 28. Birchler, J.A., Bhadra, M.P. and Bhadra, U. Making noise about silence: repression of repeated genes in animals. Curr. Opin. Genet. Dev. 10 (2000) 211-216.
  • 29. Hsieh, C.L. Dynamics of DNA methylation pattern. Curr. Opin. Genet. Dev. 10 (2000) 224-228.
  • 30. Leavitt, J., Ng, S.Y., Varma, M., Latter, G., Burbeck, S., Gunning, P. and Kedes, L. Expression of transfected mutant β-actin genes: transitions toward the stable tumorigenic state. Mol. Cell. Biol. 7 (1987) 2467-2476.
  • 31. Doyle, T. and Botstein, D. Movement of yeast cortical actin cytoskeleton visualized in vivo. Proc. Natl. Acad. Sci. USA. 93 (1996) 3886-3891.
  • 32. Westphal, M., Jungbluth, A., Heidecker, M., Muhlbauer, B., Heizer, C., Schwartz, J.M., Marriott, G. and Gerisch, G.. Microfilament dynamics during cell movement and chemotaxis monitored using a GFP-actin fusion protein. Curr. Biol. 7 (1997) 176-183.
  • 33. Ballestrem, C., Wehrle-Haller, B. and Imhof, B. A. Actin dynamics in living mammalian cells. J. Cell. Sci. 111 (1998) 1649-1658.
  • 34. Verkhusha, V.V., Shavlovsky, M.M., Nevzglyadova, O.V., Gaivoronsky, A.A., Artemov, A.V., Stepanenko, O.V., Kuznetsova, I.M. and Turoverov, K.K. Expression of recombinant GFP-actin fusion protein in the methylotrophic yeast Pichia pastoris. FEMS Yeast Res. 3 (2003) 105-111.
  • 35. Hrovat, A., Frangež, R., Pogačnik, A. and Vrecl, M. Actin cytoskeleton rearrangement in cells after the activation of membrane-bound receptor for thyrotropin-releasing hormone. Slov. Vet. Res. 40 (2003) 181-189.
  • 36. Visegrady, B., Lorinczy, D., Hild, G., Somogyi, B. and Nyitrai, M. The effect of phalloidin and jasplakinolide on the flexibility and thermal stability of actin filaments. FEBS Lett. 565 (2004) 163-166.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-e0d81d4f-9c88-4f56-9278-b113dc55ad97
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.