PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 18 | 2 |

Tytuł artykułu

Effects of magnetic field on activity of superoxide dismutase and catalase in Glycine max [L.] Merr. roots

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Under a magnetic field the activities of superoxide dismutase (SOD) in vitro and in vivo and accompanying activities of catalase activity in vivo were investigated in soybean roots. In plant cells a magnetic field creates a stress condition as other environmental stress factors do. To respond to the stress conditions, the occurred reactive oxygen species are scavenged by defense systems. In this study, two enzymes of the defense system, SOD and catalase activities were investigated under magnetic field. Enzyme and soybean seeds exposed to a magnetic field for a period of 2.2, 19.8. and 33s at the magnetic flux of 2.9-4.6 mT. SOD activities data were compared with magnetized enzyme and soybean roots. While the absorbance values of enzyme that passed through the magnetic field with a period of 19.8s for 24 hours were measured and SOD activity was significantly increased. At the same time, magnetic field SOD activity of the soybean roots was increased 21.18 % relative to control (P<0.05). After soybean seeds were treated by various magnetic fields and time periods, the activities of superoxide dismutase and catalase were significantly increased (P<0.05) during germination. At the 19.8s for 72 hours, SOD and catalase activities were increased 21.15% and 15.20% relative to control, respectively. Thus, it is indicated that the function of defense enzymes in seedlings was intensified due to the treatment of magnetic field. The increases of magnetic field exposure times do not cause linear increases in enzyme activities in vitro and in vivo studies.

Wydawca

-

Rocznik

Tom

18

Numer

2

Opis fizyczny

p.175-182,fig.,ref.

Twórcy

autor
  • Istanbul Kultur University, 34156 Atakoy-Istanbul, Turkey
autor
autor

Bibliografia

  • 1. ALSCHER R. G., ERTÜRK N, HEATH L. S. Role of superoxide dismutases (SODs) in controlling oxidative stres in plants. J. Exp. Bot. 53 (372), 1331, 2002.
  • 2. CANNIO R., FIORENTINO G., MORANA A., ROSSI M., BARTOLUCCI S. Oxygen: Friend or foe? Archael Superoxide Dismutass in the protection of intra- and extracellular oxidative stress. Front. Biosci. 5, 768, 2000.
  • 3. MALENČIĆ D. J., POPOVIĆ M., MILADINOVIĆ J. Stres tolerance parameters in different genotypes of soybean. Biol. Plant. 46 (1), 141, 2003.
  • 4. SHARMA Y. K., DAVIS K. R. The effects of ozone on antioxidant responses in plants. Free Rad. Biol. Med. 23(3), 480, 1997.
  • 5. VAN BREUSEGEM F., VRANOVA E., DAT J. F., INZE D. The role of oxygen species in plant signal transduction. Plant Sci. 161, 405, 2001.
  • 6. ALADJADJIYAN A., YLIEVA T. Influence of stationary magnetic field on the early stages of the development of Tobacco seeds (Nicotiana tabacum L.). Cent. Europ. Agri. 4(2), 131, 2003.
  • 7. ATAK Ç., ALİKAMANOĞLU S., DANILOV V. I., RZAKOULIEVA A., YURTTAS B., TOPÇUL F. Effect of magnetic field on Paulownia seeds. Com. JINR. Dubna, pp. 1-14, 2000.
  • 8. GIDROL X., LIN W. S., DĖGOUSĖE N., YIP S. F. KUSH A. Accumulation of reactive oxygen species and oxidation of cytokinin in germinating soybean seeds. Europ. J. Biochem. 224, 21, 1994.
  • 9. GONZÁLES-RODRİGUEZ A. M., TAUSZ M., WONISCH A., JİMÉNEZ M. S., GRILL D.,MORALES D. The significance of xanthophylls and tocopherols in photooxidative stress and photoprotection of three Canarian laurel forest tree species on a high radiation day. J. Plant Physiol. 158, 1547, 2001.
  • 10. TAUSZ M., WONISCH A., PETERS J., JIMÉNEZ M. S., MORALES D. GRİLL D. Short-term changes in free radical scavengers and chloroplast pigments in Pinus canariensis needles as affected by mild drought stress. J. Plant Physiol. 158, 213, 2001.
  • 11. WAOJTYLA L., GARNCZARSKA M., ZALEWSKI T., BEDNARSKI W., RATAJCZAK L., JURGA S. A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds.J. Plant Physiol. 163, 1207, 2006.
  • 12. AKSENOV S. I., BULYCHEV A. A., GRUNINA T. Y., TUROVETSKII V. B. Mechanisms of the action of a low frequency magnetic field on the initial stages of germination of wheat seeds. Biophys. 41(4), 931, 1996.
  • 13. ALADJADJIYAN A. Study of the influence of magnetic field on some biological characteristics of Zea mais. J. Cent. Europ. Agri. 3, 89, 2002.
  • 14. BAKALOVA S., NIKOLOVA A ., NEDEVA D. Isoenzyme profiles of peroxidase, catalase and superoxide dismutase as affected by dehydration stress and ABA during germination of wheat seeds. Bulg. J. Plant Physiol. 30 (1-2), 64, 2004.
  • 15. HIROTA N., NAKAGAWA J., KITAZAWA K. Effects of a magnetic field on the germination of plants. J. App. Physiol. 85 (8), 5717, 1999.
  • 16. RACUCIU M., CALUGARU G. H., CREANGA D. E. Static Magnetic Field Influence on Some Plant Growth. Rom. J. Physiol. 51, 27, 2006.
  • 17. BELYAVSKAYA N. A. Biological effects due to weak magnetic field on plants. Adv. Space Res. 34, 1566, 2004.
  • 18. ATAK, Ç., ÇELİK, Ö., OLGUN, A., ALİKAMANOĞLU,S. RZAKOULİEVA A. Effect of magnetic field on peroxidase activities of soybean tissue culture. Biotechnology & Biotechnological Equipment. 2, 166, 2007.
  • 19. SAIRAM R. K., RAO K. V., SRIVASTAVA G. C. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 163, 1037, 2002.
  • 20. PRUGNON P., ZHOU J. Y. Raw material enzymatic activity determination: A specific case for validation and comparison of analytical methods-The example of superoxide dismutase (SOD). J. Pharm. Biomed. Analy. 40, 1143, 2006.
  • 21. ATAK C., EMİROĞLU O., ALIKAMANOĞLU S., RZAKOULIEVA A. Stimulation of regeneration by magnetic field in soybean (Glycine max L. Merrill) tissue cultures. J. Cell Mol. Biol. 2, 113, 2003.
  • 22. BÜYÜKUSLU N., ÇELİK Ö., ATAK Ç. The effects of magnetic field on the activity of superoxide dismutase. J. Cell Mol. Biol. 5, 57, 2006.
  • 23. BATCIOĞLU K., ÖZTÜRK I. Ç., ATALAY S., DOĞAN D., BAYRİ N., DEMİRTAŞ H. Investigation of time dependent magnetic field effects on superoxide dismutase and catalase activity: in vitro study. J. Biol. Phys. Chem. 2(3/4), 108, 2002.
  • 24. PIACENTINI M. P., FRATERNALE D., PIATTI E., RICCI D., VETRANO F., DACHA M., ACCORSI A. Senescence delay and change of antioxidant enzyme levels in Cucurmis sativus L. etiolated seedlings by ELF magnetic fields. Plant Sci. 161, 45, 2001.
  • 25. ADAIR R.K. Effects of very weak magnetic fields on radical pair reformation. Bioelectromagnetics 20, 255, 1999.
  • 26. FLOREZ M., CARBONELL M. V., MARTINEZ E. Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. Environ.Exp. Bot. 59, 68, 2007.
  • 27. REINA F. G., PASCUAL L. A., FUNDORA I. A. Influence of a stationary magnetic field on water relations in lettuce seeds. Part II: Experimental Results, Bioeolectromagnetics 22, 596, 2001.
  • 28. GALLAND P., PAZUR A. Magnetoreception in plants. J. Plant Res. 118, 371, 2005.
  • 29. PAROLA A. H., KOST D., KASTIR G., MONSELISE E. B. I., COHEN-LURIA R. Radical Scavengers Suppress Low Frequency EMF Enhanced Proliferation in Cultured Cells and Stress Effects in Higher Plants. The Environmentalist 25, 103, 2005.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-dfccd77d-7df8-497e-acbe-710f2927eb23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.