PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 55 | 4 |

Tytuł artykułu

Partial characterization and optimization of production of extracellular alpha-amylase from Bacillus subtilis isolated from culturable cow dung microflora

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Studies of α-amylase production by Bacillus subtilis (CM3) isolated earlier from cow dung microflora, were carried out. The optimum temperature, pH and incubation period for amylase production were 50-70°C, 5.0-9.0 and 36 h, respectively. Enzyme secretion was very similar in the presence of any of the carbon sources tested (soluble starch, potato starch, cassava starch, wheat flour, glucose, fructose, etc.). Yeast extract and ammonium acetate (1%) as nitrogen sources gave higher yield compared to other nitrogen sources (peptone, malt extract, casein, asparagine, glycine, beef extract), whereas ammonium chloride, ammonium sulphate and urea inhibited the enzyme activity. Addition of Ca⁺² (10-40 mM) to the culture medium did not result in further improvement of enzyme production, whereas the addition of surfactants (Tween 20, Tween 40, Tween 80, and sodium lauryl sulphate) at 0.02% resulted in 2-15% increase in enzyme production. There were no significant variations in enzyme yield between shaked-flask and laboratory fermentor cultures. The purified enzyme is in two forms with molecular mass of 18.0 ± 1 and 43.0 ± 1 kDa in native SDS-PAGE.

Wydawca

-

Rocznik

Tom

55

Numer

4

Opis fizyczny

p.289-296,fig.,ref.

Twórcy

autor
  • Central Tuber Crops Research Institute, Bhubaneswar, India
autor
autor
autor

Bibliografia

  • Abe F., N. Ishibashi and S. Shimamura. 1995. Effect of administration of Bifidobacteria and lactic acid bacteria to newborn calves and piglets. J. Dairy Sci. 78: 2838-2846.
  • Arnesen S., S.H. Eriksen, J. Olsen and B. Jensen. 1998. Increased production of α-amylase from Thermomyces lanuginosus by the addition of Tween 80. Enzyme Microb. Technol. 23: 249-252.
  • Auclair E., http://resources.ciheam.org/om/pdf/c54/01600010. pdf. Accessed on 20th January, 2006.
  • Aiyer P.V.D. 2004. Effect of C:N ratios on α-amylase production by Bacillus licheniformis SPT 27. African J. Biotech. 3: 519-522.
  • Babu K.R. and T. Satyanarayana. 1993. Parametric optimization of extracellular α-amylase production by thermophilic Bacillus coagulans. Folia Microbiol. 38: 77-80.
  • Baig M.A., J. Pazlarova and J. Votruba. 1984. Kinetics of α-amylase production in a batch and fedbatch culture of Bacillus subtilis. Folia Microbiol. 29: 359-364.
  • Breul S. 1998. Les Probiotiques en alimentation animale. Med. Chir. Dig. 27: 89-91.
  • Davies P.E., D.L. Cohen and A. Whitaker. 1980. The production of α-amylase in batch and chemostat culture of Bacillus stearothermophilus. Antonie Van Leeuwenhock 46: 391-398.
  • Das K., R. Doley and A.K. Mukherjee. 2004. Purification and biochemical characterization of thermostable, alkaliphilic, extracellular α-amylase from Bacillus subtilis DM-03, a strain isolated from the traditional food of India. Biotechnol. Appl. Biochem. 40: 291-298.
  • Guo X, D. Li, W. Lu, X. Piao and X. Chen. 2006 Screening of Bacillis as potential and subsequent confirmation of the in vitro effectiveness of Bacillus subtilis. Antonie. Van Leeuwenhoek 90: 139-146.
  • Haq I.U., S. Rani, H. Ashraf and M.A. Qadeer. 2002. Biosynthasis of alpha amylases by chemically treated mutant of Bacillus subtilis. J. Biol. Sci. 2: 73-75.
  • Kim T.U., B.G. Gu, J.Y. Jeong, S.M. Byun and YC. Shin. 1995. Purification and characterization of a maltotetraose-forming alkaline α-amylase from an alkalophilic Bacillus strain GM8901. Appl. Environ. Microbiol. 61: 3105-3112.
  • Krishnan T. and A.K. Chandra. 1983. Purification and characterization of α-amylase from Bacillus licheniformis CUMC305. Appl. Environ. Microbiol. 46: 430-437.
  • Kung L.Jr. A direct fed microbes and enzyme for dairy cows, www.das.psu.edu/dairynutrition/documents/kung.pdf. Assessed on 10th February 2005.
  • Kumar S.U., F. Rehana and K. Nand. 1990. Production of an extracellular thermostable calcium-inhibited α-amylase by Bacillus licheniformis MY10. Enzyme Microb. Technol. 12: 714-716.
  • Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
  • Malhotra R., S.M. Noorwez and T. Satyanarayana. 2000. Production and partial characterization of thermostable and calcium independent α-amylase of extreme thermophile Bacillus thermooleovorans NP54. Lett. Appl. Microbiol. 31: 378-384.
  • Mamo G., B.A. Gashe and A. Gessesse. 1999. A highly thermostable amylase from a newly isolated thermophilic Bacillus sp. WN11. J. Appl. Microbiol. 86: 57-560.
  • Moorthy S.N. 2002. Physicochemical and functional properties of tropical tuber starches: a review. Starch/Starke 54: 559-592.
  • Najafi M.F., D. Deobagkar and D. Deobagkar. 2005. Purification and characterization of an extracellular α-amylase from Bacillus subtilis AX20. Protein Expr. Purif. 41: 349-354.
  • Narang S. and T. Satyanaray an. 2001. Thermostable α-amylase production by an extreme thermophile Bacillus thermooleovorans. Lett. Appl. Microbiol. 32: 31-35.
  • Ozcan N., A. Altlnalan and M.S. Ekaincl. 2001. Molecular cloning of an α-amylase gene form Bacillus subtilis RSKK264 and its expression in Escherichia coli and in Bacillus subtilis. Turk J. Anim. Sci. 25: 197-201.
  • Palanivelu P. 2001. Analytical Biochemistry and Separation Techniques. Kalamani Printers, Madurai, India.
  • Palit S. and R. Banerjee. 2001. Optimization of extracellular parameters for recovery of α-amylase from the fermented bran of Bacillus circulans GRS313. Braz. Arch. Biol. Technol. 44: 147-151.
  • Ray R.C., G. Padmaja and C. Balagopalan. 1990. Extracellular rhodanese production by Rhizopus oryzae. Zentralbl. Microbiol. 145: 259-268.
  • Reese E.T. and A. Maguire. 1969. Surfactants as stimulants of enzyme production by microorganisms. Appl. Microbiol. 17: 81-114.
  • Roychoudhary R.S., S.U.J. Parulekar and W.A. Weigand. 1989. Cell growth and α-amylase production characterization of Bacillus amyloliquefaciens. Biotechnol. Bioeng. 33: 197-206.
  • Rao J.L.U. and T. Satyanarayana. 2003. Enhanced secretion and low temperature stabilization of a hyperthermostable and Ca⁺²-independent α-amylase of Geobacillus thermolevorans by surfactants. Lett. App. Microbiol. 36: 191-198.
  • Rukhaiyar R. and S.K. Srivastava. 1995. Effect of various carbon substrates on α-amylase production from Bacillus species. World J. Microbiol. Biotechnol. 10: 76-82.
  • Tonkova A. 1991. Effect of glucose and citrate on α-amylase production in Bacillus licheniformis. J. Basic. Microbiol. 31: 217-222.
  • Tonkova A. 2006. Microbial starch converting enzymes of the α-amylase family. In: Ray R.C., and Wards O.P (eds), pp. 421-472, Microbial Biotechnology in Horticulture, Science Publishers, Enfield, New Hampshire, USA.
  • Tsvetkov V.T. and E.I. Emanuilova. 1989. Purification properties of heat stable α-amylase from Bacillus brevis. Appl. Microbiol. Biotechnol. 31: 246-248.
  • Wallace R.T. and C.J. Newbold. 1993. Rumen fermentation and its manipulation: the development of yeast culture as feed additives. In: Lyons, T.P (ed.). Biotechnology in Feed Industry, pp. 173-192, Alltech Technical Publications, Kentucky, USA.
  • Ware D.R., PL. Read and E.T. 1988. Lactation performance of two large diary herds fed Lactobacillus acidophilus strain BT 1386. J. Dairy Sci. 71: 219-222.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-db39f017-3311-482a-a952-a098addb60ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.