PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 19 | 2 |

Tytuł artykułu

Statistical characteristics of riverflow variability in the Odra River basin, Southwestern Poland

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We have analyzed the statistical characteristics of riverflow variability in the Odra River basin in southwestern Poland. In particular, we have examined the daily discharge time series recorded at 15 sites from November 1971 to October 2006. The skewness and kurtosis values of the time series are computed to determine if the empirical distribution of the data follows a normal distribution. The empirical distributions of all the time series are found to be non-Gaussian. The kurtosis values are interpreted in terms of intermittency, and together with skewness they are found to be significantly correlated with morphometric properties of the subbasins. In addition, several theoretical probability distributions are fitted to the riverflow data at each site. Among them, the 5-parameter Wakeby distribution is found to provide the best overall fit. Subsequently, the Wakeby distribution is used to calculate the return periods. Finally, the trend and stationarity around a trend of the various riverflow time series are assessed using the Cox-Stuart and Phillips-Perron (Dickey-Fuller) statistical tests. A decreasing trend is found in the daily discharge data at all sites, but there is no evidence of nonstationarity around the trend over the time span of the data record. A good understanding of the statistical characteristics of riverflow fluctuations in the Odra River basin is essential for water resources planning and management, including flood control and prediction in SW Poland.

Wydawca

-

Rocznik

Tom

19

Numer

2

Opis fizyczny

p.387-396,fig.,ref.

Twórcy

autor
  • Indiana University, 402 N. Blackford Street, Indianapolis, IN 46202, USA

Bibliografia

  • 1. BORDIGNON S., LISI F. Nonlinear analysis and prediction of riverflow time series. Environmetrics 11, 463, 2000.
  • 2. GOBENA A.K., GAN T.Y. Low-frequency variability in Southwestern Canadian streamflow: Links with large-scale climate anomalies. International Journal of Climatology 26, 1843, 2006.
  • 3. SEN A.K. Complexity analysis of riverflow time series. Stochastic Environmental Research and Risk Assessment 23, 361, 2009.
  • 4. MARSH T.J., DALE M. The UK floods of 2000/01 – a hydrometeorological Appraisal. CIWEM Journal 16, 180, 2002.
  • 5. YEVJEVICH V. Fluctuations of wet and dry years Part I: Research data and mathematical models. Proc Hydrology Days, Paper No. 1, Colorado State University, Fort Collins, CO, 1963.
  • 6. FINLAYSON B.L., MCMAHON T.A. Global Runoff. Encyclopedia of Earth System Science. Vol. 2. Academic Press, San Diego, California, USA, 1992.
  • 7. MARKOVICH R.D. Probability of best fit to distributions of annual precipitation and runoff. Hydrological Paper No.8. Colorado State University, Fort Collins, CO, 1965.
  • 8. LOF G., HARDISON C.H. Storage requirements for water in the United States. Water Resources Research 2, 232, 1966.
  • 9. VOGEL R.M., WILSON I. Probability distribution of annual maximum, mean, and minimum streamflows in the United States. ASCE Journal of Hydrologic Engineering 1, 69, 1996.
  • 10. KROLL C.N., VOGEL R.M. Probability distributions of low streamflow series in the United States. ASCE Journal of Hydrologic Engineering 7, 137, 2002.
  • 11. U.S. Water Resources Council, Guidelines for determining flood flow frequency: Revised Bulletin 17B of the Hydrology Committee, U.S. Water Resources Council, 1982.
  • 12. YUE S., WANG C.Y. Possible regional probability distribution types of Canadian streamflow by L-moments. Water Resources Management 18, 425, 2004.
  • 13. ARBELAEZI A., CASTRO L.M. Low flow discharges regional analysis using Wakeby distribution in an ungauged basin in Colombia. Proc Hydrology Days, Colorado State University, pp. 198-208, 2007.
  • 14. HAMED K.H. Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data. Journal of Hydrology 368, 143, 2009.
  • 15. BOUCHARD A., HAEMMERLI J. Trend detection in water quality time series of LRTAP-Quebec network lakes. Water, Air, and Soil Pollution 62, 89, 1992.
  • 16. DIRMEYER P.A., BRUBAKER K.L. Evidence for trends in the Northern Hemisphere water cycle. Geophysical Research Letters 33, L14712, doi:10.1029/2006GL026359, 2006.
  • 17. MANN B. Nonparametric tests against trend. Econometrica 13, 245, 1945.
  • 18. ZHANG Q., XU C.-Y., YANG T. Variability of water resources in the Yellow River basin of past 50 Years, China. Water Resources Management 23, 1157, 2009.
  • 19. KUNDZEWICZ Z.W., GRACZYK D., MAURER T., PIŃSKWAR I., RADZIEJEWSKI M., SVENSSON C., SZWED M. Trend detection in riverflow series: 1. Annual maximum flow. Hydrological Sciences Journal 50, (5), 797, 2005.
  • 20. FAGANELLO E., ATTEWILL L. Flood management strategy for upper and middle Odra River fasin: feasibility study of Raciborz Reservoir. Natural Hazards 36, 273, 2005.
  • 21. DUBICKI A., MALINOWSKA-MAŁEK J., STROŃSKA K. Flood hazards in the upper and middle Odra River basin– A short review over the last century. Limnologica 35, 123, 2005.
  • 22. DUBICKI A., SŁOTA H., ZIELIŃSKI J. (Eds) The Odra Basin – a monograph of the July 1997 flood, IMGW, Warsaw, 1999 [In Polish].
  • 23. KUNDZEWICZ Z.W. Is the Frequency and Intensity of Flooding Changing in Europe? Chapter 3, 2005.
  • 24. BARREDO J.I. Major flood disasters in Europe: 1950–2005. Natural Hazards 42, 125, 2007.
  • 25. DE ROO A., ODIJK M., SCHMUCK G., KOSTER E., LUCIEER A. Assessing the effects of land use changes on floods in the Meuse and Oder catchment. Physics and Chemistry of the Earth 26, 593, 2001.
  • 26. DE ROO A., SCHMUCK G., PERDIGAO V., THIELEN J. The influence of historic land use changes and future planned land use scenarios on floods in the Oder catchment. Physics and Chemistry of the Earth 28, 1291, 2003.
  • 27. GOUWELEEUW B.T., THIELEN J., FRANCHELLO G., DE ROO A.P.J., BUIZZA R. Flood forecasting using medium-range probabilistic weather prediction. Hydrology and Earth System Sciences 9, (4), 365, 2005.
  • 28. BUTTS M.B., OVERGAARD J., VIAENE P., DUBICKI A., STROŃSKA K., SZALINSKA W., LEWANDOWSKI A., OLSZEWSKI T., KOLERSKI T. Flexible process-based hydrological modelling framework for flood forecasting-MIKE SHE. In: Proceedings of the International Conference ‘‘Innovation, advances and implementation of flood forecasting technology’’ Tromso, Norway, 17–19 October 2005.
  • 29. MENGELKAMP H.-T., WARRACH K., RUHE C., RASCHKE E. Simulation of runoff and streamflow on local and regional scales. Meteorology and Atmospheric Physics 76, 107, 2001.
  • 30. NIEDZIELSKI T. A data-based regional scale autoregressive rainfall-runoff model: A study from the Odra River, Stochastic Environmental Research and Risk Assessment 21, 649, 2007.
  • 31. STRUPCZEWSKI W.G., SINGH V.P., MITOSEK H.P. Non-stationary approach to at-site flood frequency modelling. III. Flood analysis of Polish rivers. Journal of Hydrology 248, 152, 2001.
  • 32. VAN GELDER P.H.A.J.M., VAN NOORTWIJK J.M., DUITS M.T. Selection of probability distribution with a case study on extreme Oder River discharges. In: safety and reliability 2, 1475, 1999.
  • 33. DUBICKI A. Characterisation of causes, progress, and magnitude of the flood in 1977 in upper and middle Odra River basin. In: Jahn A, Kowaliński S (Eds) Flood in 1977 and its consequences for Lower Silesia. PAN Oddział we Wrocławiu, Komisja Nauk o Ziemi, Wrocław, pp. 27-40, 1979 [In Polish].
  • 34. KOZIARSKI S. Navigational function of the Odra river. Czasopismo Geograficzne LXVIII (2), 155, 1997 [In Polish].
  • 35. DZIUBEK A.M., KOWAL A.L., NALBERCZYŃSKI A., SZYMAŃSKA H. (Eds) Water resources management of the upper and middle Odra River. Regionalny Zarząd Gospodarki Wodnej we Wrocławiu, Wrocław, 1993 [In Polish].
  • 36. CONSOLINI G., DE MICHELIS P. Non-Gaussian function of AE-index fluctuations: Evidence for time intermittency. Geophysical Research Letters 25, 4087, 1998.
  • 37. MAHRT L. Intermittency of atmospheric turbulence. Journal of the Atmospheric Sciences 46, 79, 1999.
  • 38. BRUNO R., BAYASSANO B., PIETROPAOLO E., CARBONE V., VELTRI P. Effects of intermittency on interplanetary velocity and magnetic field fluctuations anisotropy. Geophysical Research Letters 28, 3185, 1999.
  • 39. JOHNSON N.L., KOTZ S., BALAKRISHNAN N. Continuous Univariate Distributions - Vol. 1, Wiley, New York, 1994.
  • 40. HOSKING J.R.M. The Wakeby distribution. Research Report RC12302, IBM Research Division, Yorktown Heights, New York, 1986.
  • 41. LANDWEHR J.M., MATALAS N.C., WALLIS J.R. Estimation of parameters and quantiles of Wakeby distributions. Water Resources Research 15, 1361, 1979.
  • 42. KOTZ S., JOHNSON N.L., READ C.B. Encyclopedia of Statistical Sciences, Vol. 9, Wiley, New York, USA, 1988.
  • 43. HOUGHTON J.C. Birth of a parent: the Wakeby distribtion for modeling flood flows. Water Resources Research 14, 1105, 1978.
  • 44. GRIFFITHS G.A. A theoretically based Wakeby distribution for annual flood series. Hydrological Sciences Journal 34, 231, 1989.
  • 45. PARK J.S., JUN H.S., KIM R.S., OH J.H. Modeling summer extreme rainfall over the Korean peninsula using Wakeby distribution. International Journal of Climatology 21, 1371, 2001.
  • 46. SU B.D., KUNDZEWICZ Z.W., JIANG T. Simulation of extreme precipitation over the Yangtze river basin using Wakeby distribution. Theoretical and Applied Climatology, doi: 10.1007/s00704-008-0025-5, 2008.
  • 47. McCUEN R.H. Modeling hydrologic change-statistical methods, Lewis Publishers, Boca Raton, 2003.
  • 48. HAMED K.H., RAO A.R. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology 204, 182, 1998.
  • 49. PERRON P. Trends and random walks in macroeconomic time series. Journal of Economic Dynamics and Control 12, 297, 1988.
  • 50. DICKEY D.A., FULLER W.A. Distribution of the Estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74, 427, 1979.
  • 51. GNANADESIKAN R. Methods for Statistical Data Analysis of Multivariate Observations. 2nd ed. Wiley, New York, 1997.
  • 52. HOLMGREN E. C. The P-P plot as a method of comparing treatment effects. Journal of the American Statistical Association 90, 360, 1995.
  • 53. GRAHAM L.P. Climate Change Effects on River Flow to the Baltic Sea. Ambio 33, 235, 2004.
  • 54. ABSALON D., MATYSIK M. Changes in water quality and runoff in the Upper Oder River basin. Geomorphology 92, 106, 2007.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-d75456d7-d6d1-4df0-87f9-6312fe7230aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.