PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 50 | 3 |

Tytuł artykułu

Molekularne podstawy ksztaltowania tolerancji na wysychanie w dojrzewajacych nasionach

Treść / Zawartość

Warianty tytułu

Języki publikacji

PL

Abstrakty

EN
Traditionally the seeds have been divided into three storage behaviour classes: recalcitrant, desiccation-sensitive (orthodox) and intermediate. Desiccation tolerance is one of fundamental properties of the orthodox seeds. Desiccation evolves a water stress that leads to many physiological, phenological and morfological changes. Several hypotheses were proposed to explain the physiological basis of desiccation tolerance, including accumulation of osmoprotectants, protein synthesis and genes with upregulated expression in response to dehydratation. Numerous studies on the seeds demonstrated their accumulation of soluble sugars during the acquisition of desiccation tolerance.

Wydawca

-

Rocznik

Tom

50

Numer

3

Opis fizyczny

s.13-22,rys.,bibliogr.

Twórcy

  • Uniwersytet Warminsko-Mazurski, ul. Oczapowskiego 1a, 10-718 Olsztyn

Bibliografia

  • [1] Angell C.A. 1990. Relaxation, glass formation, nucleation, and rupture in normal and water-like liquids. W: Correlation and connectivity. Stanley H.E., Ostrowsky N. (red.), Netherlands, Kulwer Academic Publishers: 133-160.
  • [2] Alamillo J., Almoguera C., Barteis D., Jordano J. 1995. Constitutive expression of small heat shock proteins in vegetative tissues of the resurrection plant Craterostigma plantagineum. Plant Molecular Biology 29: 1093-1099.
  • [3] Alberts B., Bray B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. 1999. Podstawy biologii komórki. Wprowadzenie do biologii molekularnej. PWN, Warszawa: 186-187.
  • [4] Berjak P., Pammenter N. W. 1997. Progress in the understanding and manipulation of desiccation-sensitive (recalcitrant) seeds. W: Basic and Applied Aspects of Seed Biology: Proceedings of the Fifth International Workshop on Seeds, Reading, 1995. Dordrecht, Kluwer Academic Publishers: 689-703.
  • [5] Bewley J.D., Black M. 1994. Seeds Physiology of Development and Germination, Second Edition. New York, Plenum Press: 445 ss.
  • [6] Black M., Corbineau F., Gee H., Côme D. 1999. Water content, raffinose and dehydrins in the indication of desiccation tolerance in immature wheat embryos. Plant Physiology 120: 463-471.
  • [7] Brenac P., Horbowicz M., Downer S.M., Dickerman A.M., Smith M.E., Obendorf R.L. 1997. Raffinose accumulation related to desiccation tolerance during maize (Zea mays L.) seed development and maturation. Journal of Plant Physiology 150: 481-488.
  • [8] Bruggink G.T., Ooms J.J.J., Van der Toorn P. 1999. Induction of longevity in primed seeds. Seed Science Research 9: 49-53.
  • [9] Buitink J., Hemminga M.A., Hoekstera F.A. 1999. Influence of water content and temperature on molecular mobility and intercellular glasses in seeds and pollen. Plant Physiology 118: 531-541.
  • [10] Buitink J., Hemminga M.A., Hoekstera F.A. 2000. Is there a role for oligosaccharides in longevity? An assessment of intracellular glass stability. Plant Physiology 122: 1217-1224.
  • [11] Burke M.J. 1986. The glassy state and survival of anhydrous biological systems. W: Membranes, Metabolism and Dry Organisms. Leopold A.C. (red), Comell University Press, Ithaca, NY: 358-363.
  • [12] Caffrey M., Foneseca V., Leopold A.C. 1988. Lipid-sugar interactions: relevance to anhydrous biology. Plant Physiology 86: 754-758.
  • [13] Chiatante D., Brusa P. 1994. Increase of the content of QP47 (a desiccation-associated nuclear protein) in embyro cells during maturation of pea seeds. Seed Science Research 4: 421-429.
  • [14] Close T.J., Asghar R., Meyer N., DeMason D.A. 1993. Dehydrins: Immunolocalization, purification, biochemical characterization, and model for their mode of action (abstract no. 18). Plant Physiology 102: 5.
  • [15] Crowe J.H., Hoekstera F.A., Crowe L.M. 1992. Anthdrobiosis. Annual Revue of Physiology 86: 754-758.
  • [16] Cuming A.C. 1999. LEA proteins. W: Seeds Proteins. Shewry P.R., Casey E. (red), Kulwer Academic Publishers: 753-780.
  • [17] Ellis R.H., Hong T.D., Roberts E.H. 1990. Effect of moisture content and method of rehydration on the susceptibility of pea seeds to imbibition damage. Seed Science and Technology 18: 131-138.
  • [18] Ellis R.H., Hong T.D., Roberts E.H. 1987. The development of desiccation-tolerance and maximum seed quality during seed maturation in six grain legumes. Annals of Botany 59: 23-29.
  • [19] Farrant J.M., Pammenter N.W., Berjak P. 1992. Development of the recalcitrant homoiohydrous seeds of Avicennia marina: anatomical, ultrastructural and biochemical events associated with development from histodifferentiation to maturation. Annals of Botany 70: 75-86.
  • [20] Farrant J.M., Pammenter N.W., Berjak P., Famsworth E.J., Vertucci C.W. 1996. Presence of dehydrin-like proteins and levels of abscisic acid in recalcitrant (desiccation sensitive) seeds may be related to habitat. Seed Science Research 6: 175-182.
  • [21] Finch-Savage W.E., Farrant J.M. 1997. The development of desiccation-sensitive seeds in Quercus robur L. Reserve accumulation and plant growth regulators. Seed Science Research 7: 35-39.
  • [22] Franks F., Hatley R.H.M., Mathias S. 1991. Materials science and the production of shelf-stabile biologicals. Biopharmaceutical Technology 4: 38-42.
  • [23] Groot S.P.C., Van der Geest A.H.M., Tesnier K., Alonso-Blanco C., Bentsink L., Donkers H., Koornneef M., Vereugdenhil D., Bino R.J. 2000. Molecular genetics analysis of Arabidopsis seeds quality. W: Seeds biology, Advances and Aplication. Black M., Brandford K.J., Vazquez-Ramos (red),.Wallingford UK, CAB International.
  • [24] Hong T.D., Ellis R.H. 1997. The effect of the initial rate of drying on the subsequent ability of immature seeds of Norway maple (Acer platanoides L.) to survive rapid desiccation. Seed Science Research 7: 41-45.
  • [25] Horbowicz M., Obendorf R.L., McKersie B.D., Viands D.R. 1995. Soluble saccharides and cyclitols in alfalfa (Medicago sativa L.) somatic embryos, leaflets, and mature seeds. Plant Science 109: 191-198.
  • [26] Kermode A.R. 1997. Approaches to elucidate the basis of desiccation-tolerance in seeds. Seed Science Research 7: 75-95.
  • [27] Kermode A.R., Bewley J.D. 1989. Developing seeds of Ricinus communis L., when detached and maintained in atmosphere of high relative humidity, switch to a germinative mode without the requirement for complete desiccation. Plant Physiology 90: 702-707.
  • [28] Koster K.L. 1991. Glass formation and desiccation tolerance in seeds. Plant Physiology 96: 302-304.
  • [29] Koster K.L., Leopold A.C. 1988. Sugars and desiccation tolerance in seeds. Plant Physiology 88: 829-832.
  • [30] Leopold A.C. 1990. Coping with desiccation. W: Stress responses in plants: adaptation and acclimation mechanisms. Alscher R.G., Cumming J.R. (red), New York, Willey-Liss: 57-86.
  • [31] Leprince O., Hendry G.A.F., McKersie B.D. 1993. The mechanisms of desiccation tolerance in developing seeds. Seed Science Research 85: 581-588.
  • [32] Li CH., Sun W.Q. 1999. Desiccation sensitivity and activities of free radical-scavenging enzymes in recalcitrant Theobroma cacao seeds. Seed Science Research 9: 209-217.
  • [33] Lin T.P., Huang N.H. 1994. The relationship between carbohydrate composition of some tree seeds and their longevity. Journal of Experimental Botany 45: 1289-1294.
  • [34] Long C.A., Dale R.M.K., Sussex I.M. 1981. Maturation and germination of Phaseolus vulgaris embrionic axes in culture. Planta 153: 405-415.
  • [35] Obendorf R.L. 1998. Buckwheat fagopyritols. W: Advances in Buckwheat Research, Campbell C., Przybylski R. (red), Seventh International Symposium on Buckwheat, Winnipeg, Manitoba, Canada (August 12-14, 1998). Winnipeg, Manitoba, Canada, Published by Organizing Committee under the auspices of the International Buckwheat Research Association: 65-71.
  • [36] Obendorf R.L. 1997. Oligosaccharides and galactosyl cyclitols in seed desiccation tolerance (Review Update). Seed Science Research 7: 63-74.
  • [37] Osborne D.J., Boubriak 1.1.1994. DNA and desiccation tolerance. Seed Science Research 4: 175-185.
  • [38] Górecki R.J., Piotrowicz-Cieślak A.I., Lahuta L., Obendorf R.L. 1997. Soluble carbohydrates in desiccation tolerance of yellow lupin seeds during maturation and germination. Seed Science Research 7: 107-115.
  • [39] Pritchard H.W., Haye A.J., Wright W.J., Steadman K.J. 1995. A comparative study of seed viability in Inga species: Desiccation tolerance in relation to the physical characteristics and chemical composition of the embryo. Seed Science and Technology 23: 85-100.
  • [40] Raghavan V. 1986. Embryogenesis in Angiosperms. A developmental and experimental study, Cambridge, Cambridge University Presss: 103-114.
  • [41] Ried J.L., Walker-Simmons M.K. 1993. Group 3 late embryogenesis abundant proteins in desiccation-tolerant seedlings of wheat (Triticum aestivum L.). Plant Physiology 102: 125-131.
  • [42] Salmen Eswpindola L., Noin M., Corbineau F., Côme D. 1994. Cellular and metabolic damage induced by desiccation in recalcitrant Araucaria angustifolia embryos. Seed Science Research 4: 193-201.
  • [43] Seanger W., Hunter W.N., Kennard O. 1986. DNA conformation is determined by economics in the hydration of phosphate groups. Nature 324: 358-388.
  • [44] Sun W.Q., Leopold A.C., 1994. Glassy state and seed storage stability: a viability equation analysis. Annals of Botany 74: 601-604.
  • [45] Vernon D.M., Meinke D.W. 1995. Late embryo-defective mutants of Arabidopsis. Developmental Genetics 16: 311-320.
  • [46] Vertucci C.W., Farrant J.M. 1995. Acquisition and loss of desiccation tolerance. W: Seed development and germination. Kigel J., Galili G. (red.), New York, Marcel Dekker Inc.: 237-271.
  • [47] Wolfe J., Bryant G. 1999. Freezing, drying, and/or vitrification of membrane-solute-water systems. Cryobiology 39: 103-129.
  • [48] Wolkers W.F., Van Kilsdonk M.G., Hoekstera F.A. 1998. Dehydration-induced conformational changes of poly-1-lysine as influenced by drying rate and carbohydrates. Biochimica et Biophysica Acta 1425: 127-136.
  • [49] Wolkers W.F. 2001. Isolation and characterization of D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochimica et Biophysica Acta 1544: 196-206.
  • [50] Steadman K.J., Pritchard H.W., Dey P.M. 1996. Tissue-specific soluble sugars in seeds as indicators of storage category. Annals of Botany 77: 667-674.
  • [51] Still D.W., Kovach D.A., Bradford K.J. 1994. Development of desiccation tolerance during embryogenesis in rice (Oryza sativa) and wild rice (Zizania palustris). Dehydrin expression, abscisic acid content, and sucrose accumulation. Plant Physiology 104: 431-438.
  • [52] Strauss G., Hauswr H. 1986. Stabilization of small unilamellar phospholipid vesicles by sucrose during frezzing and dehydration. W: Membranes, Metabolism and Dry Organisms. Leopold A.C. (red.). Cornell University Press, Ithaca, NY: 318-326.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-d6fb9167-d987-407b-a8b6-cb7e171b4f6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.