PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 49 | 1 |

Tytuł artykułu

Mikroorganizmy - czynnikiem modyfikujacym stezenie kadmu w roztworze glebowym

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

PL

Abstrakty

EN
The amounts of cadmium in soil solution are a resultant of its mobilization from the soil solid phase and its immobilization from the soil solution. Microbial soil activity markedly affects both of these processes. Microorganisms influence cadmium mobilization throughout the modification of environmental conditions. This incltldes production of CO₂, organic and inorganic acids, formation of soluble complexes of metal with chelates, which can be microbial metabolites or products of microbial transformation of the soil organic matter. Microbially mediated immobilization of cadmium from the soil solution can involve binding of metal by cell envelopes, its intracellular accumulation, formation of insoluble Cd complexes with extracellular biopolimeres, or precipitation of cation with microbially produced inorganic anions, such as sulphides and phosphates.

Wydawca

-

Rocznik

Tom

49

Numer

1

Opis fizyczny

s.3-13,bibliogr.

Twórcy

autor
  • Uniwersytet Marii Curie-Sklodowskiej, ul.Akademicka 19, 20-033 Lublin
autor

Bibliografia

  • [1] Ahrazem O., Gomez-Miranda B., Prieto A., Barasoin I., Bernabe M., Leal J.A. 1999. Structural characterization of a cell wall polysaccharide from Penicillum vermoesenii: chemotaxonomic application. Can. J. Bot. 77: 961-968.
  • [2] Anielak A.M. 2000. Chemiczne i fizykochemiczne oczyszczanie ścieków. PWN, Warszawa: 107-108.
  • [3] Arons J.M. 1965. The cell wall. W: The Fungi, tom I: The Fungal Cell. G.C. Ainsworth, A.S. Sussman (red.), Academic Press, New York and London: 58-59.
  • [4] Asami T., Kubota M., Orikasa K. 1995. Distribution of different fractions of cadmium, zinc, lead and cooperin unpolluted and polluted soils. Water Air Soil Pollut. 83: 187-194.
  • [5] Blaude D., Botton B., Chalot M. 2000. Cadmium uptake and subcellural compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiology 146: 1109-1117.
  • [6] Boswell C.D., Dick R., Macaskie L.E. 1999. The effect of haevy metals and other environmental conditions on the anaerobic phosphate metabolism of Acinetobacter johnsonii. Microbiology 145: 1711-1720.
  • [7] Brown R.L., Bowman R.S., Kieft T.L. 1994. Microbial effect on nickel and cadmium sorption and transport in volcanic tuff. J. Environ. Qual. 23: 723-729.
  • [8] Chan P., Ting Y.P. 1995. Effect of heavy metals uptake on the electrokinetic proporties of Saccharomyces cerevisise. Biotechnology Letters 17: 107-112.
  • [9] Chmiel A. 1998. Biotechnologia. Podstawy mikrobiologiczne i biochemiczne. PWN, Warszawa: 228-230.
  • [10] Christensen T. H., Huang P. M. 1999. Solid phase cadmium and the reactions of aqueous cadmium with soil surfaces. W: Cadmium in soils and plants. M.J. McLaughlin, B.R. Singh (red.), Kluwer Acad. Publ., Dordrecht, The Netherlands: 65-96.
  • [11] Cornejo J., Hennosín M.C. 1996. Interaction of humic substances and soil clay. W: Humic substances in terrestrial ecosystems. A. Piccolo (red.), Elsevier Science: 595-624.
  • [12] Cunningham D.P., Jr Lundie L.L. 1993. Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ. Microbiol. 59: 7-14.
  • [13] Curtis P.J. 1994. Release ofmetals from a Cd-contaminated streambed in response to experimental acidification and neutralization. Water Resources Research 30: 3449-3454.
  • [14] Ernst W.H. 1996. Bioavailability of heavy metals and decontamination of soils by plant. Appl. Geochem. 11: 163-167.
  • [15] Galli U., Schuepp H., Brunold C. 1994. Heavy metal binding by mycorrhizal fungi. Physiol. Plant. 92: 364-368.
  • [16] Gilis A., Corbisier P., Baeyens W., Taghavi S., Mergeay M., Mergeay M., van der Lelie M. 1998. Effect of the siderophores alcaligin E on the bioavailability of Cd to Alcaligenes eutrophus CH34. J. Inds Microbiol. Biotech. 20: 61-68.
  • [17] Herman D.C., Artiola J.F., Miller R.M. 1995. Removal of cadmium, lead and zinc from soil by rhamnolipid biosurfactant. Environ. Sci. Technol. 29: 2280-2285.
  • [18] Jeng A.S., Sing B.R. 1995. Cadmium status of soils and plant from a long-term fertility experiment in southeast Norway. Plant Soil 175: 67-74.
  • [19] Jopony M., Young S.O. 1994. The soil: solution equilibria of lead and cadmium in polluted soils. Eur. J. Soil Sci. 45: 59-70.
  • [20] Kabata-Pendias A., Pendias H. 1999. Biogeochemia pierwiastków śladowych, PWN wydanie II, Warszawa: 156-170.
  • [21] Kalbitz K., Wennrich R. 1998. Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. The Science of the Total Environment 209: 27-39.
  • [22] Keasling J.D., Hupf G.A. 1996. Genetic manipulation of polyphosphate matabolism affects cadmium tolerance in Escherichia coli. Appl. Environ. Microbiol. 62: 743-746.
  • [23] Kefala M.I., Zouboulis A.I., Matis K.A. 1999. Biosorption of cadmium ions by Actinomycetes and separation by flotation. Environ. Poll. 104: 283-293.
  • [24] Kotrba P., Dolečkova L., De Lorenzo V., Ruml T. 1999. Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides. Appl. Environ. Microbiol. 65: 1092-1098.
  • [25] Krantz-Rülcker C., Allard B., Schnürer A.B. 1996. Adsorption of IIB-metals by three common soil fungi - comparison and assessment of importance for metal distribution in natural soil systems. Soil. Biol. Bioch. 28: 967-975.
  • [26] Krishnamurti G.S.R., Ciesliński G., Huang P.M., Van Rees K.C.J. 1997. Kinetics of cadmium release from soils as influenced by organic acids: implication in cadmium availability. J. Environ. Qual. 26: 271-277.
  • [27] Kurek E., Francis J.A., Bollag J.-M. 1991. Immobilization of cadmium by microbial extracellular products. Arch. Environ. Contam. Toxicol. 21: 106-111.
  • [28] Ledin M., Krantz-Rülcker C., Allard B. 1996. Zn, Cd and Hg accumulation by microorganisms, organic and inorganic soil component in multi-compartment systems. Soil Biol. Biochem. 28: 791-799.
  • [29] Ledin M., Krantz-Rülcker C., Allard B. 1999. Microorganisms as metal sorbent: comparison with other soil constituents in multi-compartment systems. Soil Biol. Biochem. 31: 1639-1648.
  • [30] Loaëc M., Olier R., Guezennec A. 1997. Uptake of lead, cadmium and zinc by a novel bacterial exopolysacharide. Wat. Res. 31: 1171-1179.
  • [31] Macaskie L.E., DeanA.C.R., CheethamA.K., Jakeman R.J.B., Skarnulis A.J. 1987. Cadmium accumulation by a Citrobacter sp.: the chemical nature of the accumulated metal precipitate and its location on the bacterial cells. J. Gen. Microbiol. 133: 539-544.
  • [32] Markiewicz Z. 1993. Struktura i funkcja osłon bakteryjnych. PWN Warszawa.
  • [33] Marschner H. 1998. Soil-Root interface: Biological and biochemical processes. Soil chemistry and ecosystem health. Special Publication no 52 Soil Science of America: 191-231.
  • [34] McBride M.B. 1991. Processes of heavy and transition metal sorption by soil minerals. W: Interaction at the soil colloid-soil solution interface. G.H. Bolt et al. (red.), Kluwer Acad. Publ., Dordrecht, the Netherlands: 149-174.
  • [35] Morley G.F., Gadd G.M. 1995. Sorption of toxic metals by fungi and clay mineral. Mycol. Res. 99: 1429-1438.
  • [36] Newhook R., Long G., Meek M.E., Liteplo R.G., Chan P., Argo J., Domer W. 1994. Cadmium and its compounds: evaluation of risks to health from environmental exposure in Canada. Environ. Carcino. Ecotox. Revs. C12(2): 195-217.
  • [37] Ngu M., Moyar E., Magan N. 1998. Tolerance and uptake of cadmium, arsenic and lead by Fusarium pathogens of cereals. International Biodeterioration and Biodegradation 42: 55-62.
  • [38] Ow D.W. 1996. Heavy metals tolerance genes: prospective tools for bioremediation. Resources, Conservation and Recycling. [39] Pazirandeh M., Wells B.M., Ryan R.L. 1998. Development of bacterium-based heavy metal biosorbents: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif. Appl. Environ. Microbiol. 64: 4068-4072.
  • [40] Samuelson P., Wemerus H., Svedberg M., Stähl S. 2000. Staphylococcal surface display of metal binding polyhistidyl peptydes. Appl. Envron. Microbiol. 66: 1243-1248.
  • [41] Sánchez-Martín M.J., Sánchez-Camazano M. 1993. Adsorption and mobility of cadmium in natural, uncultivated soils. J. Environ. Qual. 22: 737-742.
  • [42] Schippers A., Sand W. 1999. Bakterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulphides and sulfur. Appl. Environ. Microbiol. 65: 319-321.
  • [43] Schlekat C.E., Decho A.W., Chandler G.T. 1998. Sorption of cadmium to bacterial extracellular polymeric sediment coatings under estuarine conditions. Environ. Toxicol. Chem. 17: 1867-1874.
  • [44] Seidel H., Ondruschka J., Morgenstern P., Stottmeister U. 1998. Bioleaching of heavy metals from contaminated aquatic sediments using indigenous sulfur-oxidizing bacteria: a feasibility study. Water Sci. Technol. 37(6-7): 387-394.
  • [45] Sharma P.K., Balkwill D.L., Frenkel A., 2000. Vairavamurthy M.A. A new Klebsiella planticola (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide. Appl. Environ. Microbiol. 66: 3083-3087.
  • [46] Sivan A., Chet I. 1989. Cell wall composition of Fusarium oxysporum. Soil Biol. Biochem. 21: 869-871.
  • [47] Walker S.G., Flemming C.A., Ferris F.G., Beveridge T.J., Bailey G.W. 1989. Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clay and ability of the composite to immobilize heavy metals from solution. Appl. Environ. Microbiol. 55: 2976-2984.
  • [48] Walter I., Cuevas G. 1999. Chemical fractionation of heavy metals in a soil amended with repeated sewage sludge application. The Science of the Total Environment 226: 113-119.
  • [49] Wang C.L., Michels P.C., Dawson S.C., Kitisakkul S., Baross J.A., Keasling J.D., Clark D.S. 1997. Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic culture. Appl. Environ. Microbiol. 63: 4075-4078.
  • [50] Wasay S.A., Barrington S., Tokunaga S. 1998. Retention form of heavy metals in three polluted soils. J. Soil Contamination 7: 103-119.
  • [51] Welch R.M., Norvell W.A. 1999. Mechanisms of cadmium uptake, translocation and deposition in plant. W: Cadmium in soils and plants. M.J. McLaughlin, B.R. Singh (red.), Kluwer Acad. Publ. Dordrecht, The Netherlands: 124-150.
  • [52] Wen X., Allen H.E. 1999. Mobilization of heavy metals from Le An River sediment. The Science of the Total Environment 227: 101-108.
  • [53] White C., Gadd G.M. 1996. Mixed sulphate-reducing bacterial cultures for bioprecipitation of toxic metals: factorial and response-surface analysis of the effects of dilution rate, sulphate and substrate concentration. Microbiology 142: 2197-2205.
  • [54] White C., Gadd G.M. 1998. Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms. Microbiology 144: 1407-1415.
  • [55] White C., Sharman A.K., Gadd G.M. 1998. An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nature Biotechnology 16: 572-575.
  • [56] Yin P., Yu Q., Jin B., Ling Z. 1999. Biosorption removal of cadmium from aqueous solution by using pretreated fungal biomass cultured from starch wastewater. Wat. Res. 33: 1960-1963.
  • [57] Yong R.N., Mohamed A.M.O., Warkentin B.P. 1992. Principles of contaminant transport in soil. Elsevier, New York.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-d4d3cbf0-3e7e-4494-acb4-2adb04700664
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.