PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 51 | 1 |

Tytuł artykułu

Hypsodonty in Pleistocene ground sloths

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Although living sloths (Xenarthra, Tardigrada) are represented by only two genera, their fossil relatives form a large and diverse group. The evolution of hypsodonty, the crown height of a tooth, has traditionally been viewed as a response to dietary shifts toward abrasive vegetation. But recent work indicates that hypsodonty is also due to the higher prevalence of grit and dust in more open environments. The teeth of sloths are both high−crowned and open−rooted, or hypselodont, but distinctions between the selective factors acting to produce differing degrees of hypsodonty have not been rigorously considered. A comparative analysis of hypsodonty was performed in eleven species of Pleistocene sloths. It suggests that differences in hypsodonty may be explained by dietary preferences, habitat and habits. Among mylodontids, morphologic and biomechanical analyses indicate that hypsodonty was unlikely to be due solely to feeding behavior, such as grazing. Some mylodontids (e.g., Scelidotherium leptocephalum, Lestodon armatus, Glossotherium robustum, Mylodon darwini) were capable diggers that likely dug for food, and ingestion of abrasive soil particles probably played a considerable role in shaping their dental characteristics. Increased hypsodonty over time in Paramylodon harlani, however, is apparently due to a change in habitat from closed to more open environments. Geographical distributions of the megatheriids Eremotherium and Megatherium indicate differing habitats as possible factors in hypsodonty differences. In summary, among Tardigrada hypsodonty is apparently affected by diet, habitat and habit. The absence of enamel must be responsible for much of the hypsodonty observed in xenarthrans, which obscures the interpretation of contribution of each of the mentioned factors.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

51

Numer

1

Opis fizyczny

p.53-61,fig.,ref.

Twórcy

autor
  • Museo de La Plata, CIC-CONICET, Paseo del Bosque s/n, B1900 FWA La Plata, Argentina
autor

Bibliografia

  • Bargo, M.S. 2001a. The ground sloth Megatherium americanum: skull shape, bite forces, and diet.Acta Paleontologica Polonica 46: 173–192.
  • Bargo, M.S. 2001b. El aparato masticatorio de los perezosos terrestres (Xenarthra, Tardigrada) del Pleistoceno de la Argentina. Morfometría y biomecánica. 400 pp. Unpublished Ph.D. thesis. Universidad Nacional de La Plata, La Plata.
  • Bargo, M.S. and De Iuliis, G. 1999. Hypsodonty and bilophodonty in Megatherium americanum (Xenarthra, Tardigrada): a paradox. In: B. Shockey and F. Anaya (eds.), Abstracts of the Congress Neotropical Evolution of the Cenozoic, 11. La Paz.
  • Bargo, M.S., Vizcaíno, S.F., Archuby, F.M., and Blanco R.E. 2000. Limb bone proportions, strength and digging in some Lujanian (late Pleistocene–early Holocene) mylodontid ground sloths (Mammalia, Xenarthra). Journal of Vertebrate Paleontology 20: 601–610.
  • Bobe Quinteros, R., Behrensmeyer, A.K., and Carrasco−Ormazábal, A.G. 2004. Paleoclima y evolución faunística en el Plio−Pleistoceno de África y América del Sur. Ameghiniana 41: 641–649.
  • Bond, M. 1986. Los ungulados fósiles de Argentina: evolución y paleoambientes. IV Congreso Argentino de Paleontología y Bioestratigrafía Actas 2: 173–185.
  • Cuenca Anaya, J. 1995. El aparato locomotor de los escelidoterios (Edentata, Mammalia) y su paleobiología. 452 pp. Colección “Estudis” 6, Adjuntament de València, València.
  • Croft, D.A. 2001. Cenozoic environmental change in South America as indicated by mammalian body size distributions (cenograms). Diversity and Distributions 7: 271–287.
  • Cuvier, G. 1796. Notice sur le esquelette d’une très grande espèce de quadrupède inconnue jusqu’à présent, trouvé au Paraguay, et déposé au cabinet d’histoire naturelle de Madrid. Magasin encyclopèdique, ou Journal des Sciences, des Lettres et des Arts 1: 303–310; 2: 227–228.
  • De Iuliis, G. 1996. A systematic review of the Megatheriinae (Mammalia: Xenarthra: Megatheriidae). 719 pp. Unpublished Ph.D. thesis, University of Toronto, Toronto.
  • De Iuliis, G. and Cartelle, C. 1999. A new giant megatheriine ground sloth (Mammalia: Xenarthra: Megatheriidae) from the late Blancan to early Irvingtonian of Florida. Zoological Journal of the Linnean Society 127: 495–515.
  • De Iuliis, G., Bargo, M.S., and Vizcaíno, S.F. 2000. Skull morphology variation and mastication in the fossil giant armadillos Pampatherium spp.; with remarks on related genera (Mammalia: Xenarthra: Pampatheriidae). Journal of Vertebrate Paleontology 20: 743–754.
  • Delsuc, F., Vizcaíno, S.F., and Douzery, E. 2004. Influence of Tertiary paleoenvironmental changes on the diversification of South American mammals: a relaxed molecular clock study within xenarthrans. BMC Evolutionary Biology 4: 1–13.
  • Fariña, R.A. 1996. Trophic relationships among Lujanian mammals. Evolutionary Theory 11: 125–134.
  • Fariña, R.A., and Vizcaíno, S.F. 2001. Carved teeth and strange jaws: How glyptodonts masticated. Acta Paleontologica Polonica 46: 87–102.
  • Fortelius, M. 1985. Ungulate cheek teeth: developmental, functional, and evolutionary interrelations. Acta Zoologica Fennica 180: 1–76.
  • Fortelius, M., Eronen, J., Jernvall, J. Liu, L., Pushkina, D., Rinne, J., Tesakov, A., Vislobokoba, I., Zhang, Z., and Zhou, L. 2002. Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evolutionary Ecology Research 4: 1005–1016.
  • Gervais, P. 1855. Recherches sur les mammifères fossils de l´Amérique méridionale. Annales des Sciences Naturelles, Zoologie 3: 330–338.
  • Gervais, H. and Ameghino, F. 1880. Los mamíferos fósiles de la América del Sud. 225 pp. F. Sabih−Igon, Paris.
  • Hoffstetter, R. 1958. Xenarthra. In: J. Piveteau (ed.), Traité de paléontologie, Vol. 6, 535–636. Masson, Paris.
  • Janis, C.M. 1988. An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preference. In: D.E. Russell, J.P. Santoro, and D. Sigogneau−Russell (eds.), Teeth revisited: Proceedings of the VII International Symposium on Dental Morphology. Memoirs du Muséum national d’Histoire naturelle (série C) 53: 367–387.
  • Janis, C.M. 1995. Correlations between craniodental morphology and feeding behavior in ungulates: reciprocal illumination between living and fossil taxa. In: J. Thomason (ed.), Functional Morphology in Vertebrate Palaeontology, 76–98, Cambridge University Press, New York.
  • Janis, C.M. and Ehrhardt, D. 1988. Correlation of the muzzle width and relative incisor width with dietary preference in ungulates. Zoological Journal of the Linnean Society 92: 267–284.
  • Janis, C.M. and Fortelius, M. 1988. On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biological Review 63: 197–230.
  • Jernvall, J. and Fortelius, M. 2002. Common mammals drive the evolutionary increase of hypsodonty in the Neogene. Nature 417: 538–540.
  • Kay, R.F., Williams, B.A., and Anaya, F. 2002. The adaptations of Branisella boliviana, the earliest South American monkey. In: J.M. Plavcan, R.F. Kay, W.L. Jungers, and C.P. van Schaik (eds.), Reconstructing Behavior in the Primate Fossil Record, 339–370. Kluwer Academic/Plenum Publications, New York.
  • Koenigswald, W. von, Goin, F. and Pascual, R. 1999. Hypsodonty and enamel microstructure in the Paleocene gondwanatherian mammal Sudamerica ameghinoi. Acta Palaeontologica Polonica 44: 263–300.
  • Kraglievich, L. 1930. La formación friaseana del Río Frías, Río Fénix, Laguna Blanca, etc. y su fauna de mamíferos. Physis 10: 127–161.
  • Kraglievich, J.L. 1940. Morfología normal y morfogénesis de los molares de los carpinchos y caracteres filogenéticos de este grupo de roedores. Obras completas y trabajos científicos inéditos 3: 339–494.
  • Lund, P.W. 1842. Blik paa Brasiliens Dyreverden for Sidste Jordomvaeltning. Fjerde Afhandling: Fortsaettelse af Pattedyrene. Detkongelige Danske Videnskabernes Selskabs Skrifter Naturvidenskabelige og Mathematisk Afhandlinger 9: 137–208.
  • MacFadden, B.J. 1997. Origin and evolution of the grazing guild in New World terrestrial mammals. Trends in Ecology and Evolution 12: 182–187.
  • Madsen, O., Scalli, M., Douady, C.J., Kao, D.J., DeBry, R.W., Adkins, R., Amrine, H.M., Stanhope, M.J., de Jong, W.W., and Springer, M.S. 2001. Parallel adaptative radiations in two major clades of placental mammals. Nature 409: 610–614.
  • McDonald, H.G. 1995. Gravigrade xenarthrans from the Early Pleistocene Leisey Shell Pit 1A, Hillsborough County, Florida. Bulletin of the Florida Museum of Natural History 37: 345–373.
  • McDonald, H.G. 1997. Xenarthrans: Pilosans. In: R.F. Kay, R.H. Madden, R.L. Cifelli, and J.J. Flynn (eds.), Vertebrate Paleontology in the Neotropics. The Miocene fauna of La Venta, Colombia, 233–245. Smithsonian Institution Press, Washington D.C.
  • McKenna, M.C. 1975. Toward a phylogenetic classification of the Mammalia. In: W.P. Luckett and F.S. Szalay (eds.),Phylogeny of the Primates, 21–46, Plenum Publishing Corporation, New York.
  • McNaughton, S.J., Tarrants, J.L., McNaughton, M.M., and Davis, R.H. 1985. Silica as a defense against herbivory and a growth promotor in African grasses. Ecology 66: 528–535.
  • Mendoza, M., Janis, C., and Palmqvist, P. 2002. Characterizing complex craniodental patterns related to feeding behavior in ungulates: a multivariate approach. Journal of Zoology London 258: 223–246.
  • Murphy, W.J, Eizirik, E, Johnson, W.E., Zhang, Y.P., Ryderk, O.A., and O’Brien, S.J. 2001. Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–618.
  • Owen, R. 1839. Fossil Mammalia (2). In: C.R. Darwin (ed.), The Zoology of the Voyage of the Beagle, 1 (7), 41–64. Smith, Elder and Co., London.
  • Owen, R. 1840. Fossil Mammalia (4). In: C.R. Darwin (ed.), The Zoology of the Voyage of the Beagle, 1 (13), 81–111. Smith, Elder and Co., London.
  • Owen, R. 1842. Description of the Skeleton of an Extinct Gigantic Sloth, Mylodon robustus, Owen, with Observations on the Osteology, Natural Affinities, and Probable Habits of the Megatherioid Quadruped in General. 176 pp. R. and J.E. Taylor, London.
  • Owen R. 1856. On the Megatherium (Megatherium americanum Cuvier and Blumenbach). III. The skull. Philosophical Transactions of the Royal Society of London 146: 571–589.
  • Pascual, R., Carlini, A.A., and De Santis, L.J. 1988. Dentition and ways of life in Cenozoic South American rodent−like marsupials. Outstanding examples of convergence. In: D.E. Russell, J.P. Santoro, and D. Sigogneau−Russell (eds.), Teeth Revisited: Proceedings of the VII International Symposium on Dental Morphology. Mémoires du Muséum national d’Histoire naturelle (Série C) 53: 217–226.
  • Pascual, R. and Ortiz Jaureguizar E. 1990. Evolving climates and mammal faunas in Cenozoic South America. Journal of Human Evolution 19: 23–60.
  • Philippi, R.A. 1893. Vorläufige Nachricht über fossile Säugethierknochen von Ulloma, Bolivia. Zeitschrift der deutschen geologischen Gesellschaft 45: 87–96.
  • Redford, K.H. 1985. Food habits of Armadillos (Xenarthra: Dasypodidae). In: G.G. Montgomery (ed.), The Evolution and Ecology of Armadillos, Sloths and Vermilinguas, 429–437. Smithsonian Institution Press, Washington D.C.
  • Saint−André, P.A. and De Iuliis, G. 2001. The smallest and most ancient representative of the genus Megatherium Cuvier, 1796 (Xenarthra, Tardigrada, Megatheriidae), from the Pliocene of the Bolivian Altiplano. Geodiversitas 23: 625–645.
  • Scillato−Yané, G.J. 1986. Los Xenarthra fósiles de Argentina (Mammalia, Edentata). IV Congreso Argentino de Paleontología y Bioestratigrafía 2: 151–165.
  • Scillato−Yané, G.J., Carlini, A.A., and Vizcaíno, S.F. 1987. Nuevo Nothrotheriinae (Edentata, Tardigrada) de Edad Chasiquense (Mioceno tardío) del sur de la Provincia de Buenos Aires (Argentina). Ameghiniana 24: 211–215.
  • Simpson, G.G. 1931. A new classification of mammals. Bulletin of the American Museum of Natural History 59: 259–293.
  • Simpson, G.G. 1951. Horses: The Story of the Horse Family in the Modern World and Through Sixty Million Years of History. 247 pp. Oxford University Press, New York.
  • Simpson, G.G. 1953. The Major Features of Evolution. 434 pp. Columbia University Press, New York.
  • Solounias, N. and Dawson−Saunders, B. 1988. Dietary adaptations and palaeoecology of the late Miocene ruminants from Pikermi and Samos in Greece. Palaeogeography, Palaeoclimatology, Palaeoecology 65: 149–172.
  • Solounias, N. and Moelleken, S.M. 1993. Dietary adaptation of some extinct ruminants determined by premaxillary shape. Journal of Mammalogy 74: 1059–1071.
  • Stirton, R.A. 1947. Observations on evolutionary rates in hypsodonty. Evolution 1: 32–41.
  • Stock C. 1925. Cenozoic Gravigrade Edentates of Western North America, with Special Reference to the Pleistocene Megalonychidae and Mylodontidae of Rancho La Brea. 206 pp. Carnegie Institution of Washington, Washington.
  • van Schaik, C.P., Terborgh, J.W., and Wright, S.J. 1993. The phenology of tropical forests: adaptive significance and consequences for primary consumers. Annual Review of Ecology and Systematics 24: 353–377.
  • Vizcaíno, S.F. 1994a. Mecánica masticatoria de Stegotherium tessellatum Ameghino (Mammalia, Xenarthra) del Mioceno temprano de Santa Cruz (Argentina). Algunos aspectos paleoecológicos relacionados. Ameghiniana 31: 283–290.
  • Vizcaíno, S.F. 1994b. Sistemática y Anatomía de los Astegotheriini Ameghino, 1906 (nuevo rango) (Dasypodidae, Dasypodinae). Ameghiniana 31: 3–13.
  • Vizcaíno, S.F. and Bargo, M.S. 1998. The masticatory apparatus of Eutatus (Mammalia, Cingulata) and some allied genera. Evolution and paleobiology. Paleobiology 24: 371–383.
  • Vizcaíno, S.F. and De Iuliis, G. 2003 Evidence for advanced carnivory in fossil armadillos (Mammalia: Xenarthra: Dasypodidae). Paleobiology 29: 123–138.
  • Vizcaíno, S.F. and Fariña, R.A. 1997. Diet and locomotion of the armadillo Peltephilus: a new view. Lethaia 30: 79–86.
  • Vizcaíno, S.F., Bargo. M.S., and Cassini, G.H. (in press). Dental occlusal surface area in relation to body mass, food habits and other biologic features in fossil xenarthrans. Ameghiniana 43 (1).
  • Vizcaíno, S.F., De Iuliis, G., and Bargo, M.S. 1998. Skull shape, masticatory apparatus, and diet of Vassallia and Holmesina (Mammalia: Xenarthra: Pampatheriidae). When anatomy constrains destiny. Journal of Mammalian Evolution 5: 291–322.
  • Vizcaíno, S.F., Zárate, M., Bargo, M.S., and Dondas, A. 2001. Pleistocene large burrows in the Mar del Plata area (Buenos Aires Province, Argentina) and their probable builders. Acta Paleontologica Polonica 46: 157–169.
  • Vizcaíno, S.F., Fariña, R.A., Bargo, M.S., and De Iuliis, G. 2004. Phylogenetical assessment of the masticatory adaptations in Cingulata (Mammalia, Xenarthra). Ameghiniana 41: 651–664.
  • White, J.L. 1997. Locomotor adaptations in Miocene xenarthrans. In: R.F. Kay, R.H. Madden, R.L. Cifelli, and J.J. Flynn (eds.), Vertebrate Paleontology in the Neotropics. The Miocene Fauna of La Venta, Colombia, 246–264. Smithsonian Institution Press, Washington D.C.
  • Williams, S.H. and Kay, R.F. 2001. A comparative test of adaptive explanations for hypsodonty in ungulates and rodents. Journal of Mammalian Evolution 8: 207–229.
  • Winge, H. 1941. Edentates (Edentata). In: S. Jensen, R. Spärck, and H. Volsoe (eds.), The Interrelationships of the Mammalia Genera, 319–341. Reitzels Forlag, Copenhagen.
  • Zetti, J. 1964. El hallazgo de un Megatheriidae en el “Médano invasor” del SW de Toay, Provincia de La Pampa. Ameghiniana 3: 257–265.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-d08a4ec2-c7c7-4c0b-b528-90a83e11cd37
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.