PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 57 | 2 |

Tytuł artykułu

The effect of habitat on methane emission from an alpine wetland

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Alpine wetland is a source for methane (CH₄), an important greenhouse gas, but little is known about how this habitat influences the emission. To understand this wetland habitats were selected at the altitude of 3430 m a.s.l. (in National Wetland Nature Reserve of Zoige, Quingle – Tibetan Plateau) and the methane flux was measured with static chambers in three different sites, including hollows with Carex muliensis Hand – Mazz. and Eleocharis valleculosa Ohwi f. setosa (Ohwi) Kitagawa., grass hummocks composed of Kobresia tibetica Maxim, Cremanthodium pleurocaule R. D. Good, Potentilla bifurca L. and Pedicularis sp. We have found that in alpine wetland these habitats significantly affect CH₄ emissions in the onset (April, 2006) and peak (August, 2005) stages of growing season.Hollows covered with Carex muliensis and Eleocharis valleculosa had higher values of emission than grass hummocks built by several grass species. Slight difference of CH₄ emission was found between two kinds of hollows with Carex muliensis and Eleocharis valleculosa. These results were consistent with the change of water table, which was found best correlated with CH₄ emissions (r²= 0.43, P <0.01) in the peak stage of growing season. Directly measured shoot biomass and plant heights were best related to CH₄ emissions (r²= 0.59, P <0.01). However, in the onset stage of growing season, variation of CH₄ emission may not be simply ascribed to changes in water table and vegetation structure.

Wydawca

-

Rocznik

Tom

57

Numer

2

Opis fizyczny

p.377-381,fig.,ref.

Twórcy

autor
  • Chongqing University, Chongqing 400030, China
autor
autor
autor
autor
autor
autor
autor

Bibliografia

  • Bubier J., Costello A., Moore T.R., Roulet N.T., Savage K. 1993 – Microtopography and Methane Flux in Boreal Peatlands, Northern Ontario – Can. J. Bot. 71: 1056–1063.
  • Bubier J.L., Moore T.R., Juggin S. 1995 – Predicting methane emission from bryophyte distribution in northern Canadian peatlands – Ecology, 76: 677–693.
  • Buening J., Hurley K., Johns M. 2007 – Urban wetland restoration – Geotimes, 52: 36–39.
  • Chanton J.P., Whiting G.J., Happell J.D., Gerard G. 1993 – Contrasting Rates and Diurnal Patterns of Methane Emission from Emergent Aquatic Macrophytes – Aquat. Bot. 46: 111–128.
  • Chen, H., Yao S., Wu N., Wang Y., Luo P., Tian J., Gao Y., Sun G. 2008 – Determinants influencing seasonal variations of methane emissions from alpine wetlands in Zoige Plateau and their implications – J. Geophys. Res. 113, D12303,doi:10.1029/2006JD008072.
  • Chimner R.A., Cooper D.J. 2003 – Carbon dynamics of pristine and hydrologically modified fens in the southern Rocky Mountains – Can. J. Bot. 81: 477–491.
  • Cui B.S., Zhai H.J. 2006 – Characteristics of wetland functional degradation and its ecological water requirement for restoration in Yilong Lake of Yunnan Plateau – Chinese Sci. Bull. 51: 127–135.
  • Ding A., Willis C.R., Sass R.L., Fisher F.M. 1999 – Methane emissions from rice fields: Effect of plant height among several rice cultivars – Global Biogeochem. Cycles, 13: 1045–1052.
  • Ding W., Cai Z., Tsurut, H., Li X. 2003 – Key factors affecting spatial variation of methane emissions from freshwater marshes – Chemosphere, 51: 167–173.
  • Grünfeld S., Brix H. 1999 – Methanogenesis and methane emissions: effects of water table, substrate type and presence of Phragmites australis – Aquatic Botany, 64: 63–75.
  • Hirota M., Tang Y.H., Hu Q.W., Hirata S., Kato M., Mo W. H., Cao G. M., Mariko S. 2004 – Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland – Soil Biol Biochem. 36: 737–748.
  • IPCC (Intergovernmental Panel on Climate Change) 2007 – Climate Change 2007: The Physical Science Basis – Cambridge University Press, New York.
  • Kettunen A. 2003 – Connecting methane fluxes to vegetation cover and water table fluctuations at microsite level: A modeling study – Global Biogeochem. Cycles, 17, doi: 10.1029/2002GB001958.
  • Khalil M.A.K. 2000 – Atmospheric methane: an introduction (In: Atmopheric Methane: Its Role in the Global Environment, Ed. M. Khalil) – Springer, New York, pp. 1–8.
  • Middelburg J.J., Nieuwenhuize J., Iverson N., Høgh N., Dewilde H., Helder W., Seifert R., Christof O. 2002 – Methane distribution in European tidal estuaries – Biogeochemistry, 59: 95–119.
  • Mitsch W.J. 2005 – Wetland creation, restoration, and conservation: a wetland invitational at the Olentangy River Wetland Research Park – Ecol. Eng. 24: 243–251.
  • Oquist M.G., Svensson B.H. 2002 – Vascular plants as regulators of methane emissions from a subarctic mire ecosystem – J. Geophys. Res., 107(D21), 4580, doi:10.1029/2001JD001030.
  • Van den Pol-Van Dasselaar A., Van Beusichem M.L., Oenema O. 1999 – Determinants of spatial variability of methane emissions from wet grasslands on peat soil – Biogeochemistry, 44: 221–237.
  • Wang Z.P., Han X.G. 2005 – Diurnal variation in methane emissions in relation to plants and environmental variables in the Inner Mongolia marshes – Atmos. Environ. 39: 6295–6305.
  • Wickland K.P., Striegl R.G., Mast M.A., Clow D.W. 2001 – Carbon gas exchange at a southern Rocky Mountain wetland, 1996–1998 – Global Biogeochem. Cycles, 15: 321–325.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-cede9bea-1f3a-4526-b7fe-d211f0ea297b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.