PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 27 | 1 |

Tytuł artykułu

Activities of sucrolytic enzymes in developing pods of lentil genotypes differing in seed size

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The activities of sucrolytic enzymes viz. sucrose synthase and invertases were compared in developing pods of two genotypes of lentil differing in seed weight. Biomass accumulation of both the podwall and seed of ‘large’ genotype was higher during development as compared to the ‘small’ genotype. High activity of acid invertase together with prolonged activity of alkaline invertase in podwall of ‘large’ genotype may lead to longer cell division phase resulting in its larger size and biomass. Greater biomass of podwall could be responsible for providing more reserves for the developing seed hence determining its size. Higher alkaline invertase activity in ‘large’ seed from 15-20 DAF can be correlated to the sustained sucrolytic conditions for producing more cells required for its larger size. In creased levels of sucrose synthase in ‘large’ seed especially during maturation phase suggest the role of this enzyme in enhancing the seed sink strength.

Wydawca

-

Rocznik

Tom

27

Numer

1

Opis fizyczny

p.89-93,fig.,ref.

Twórcy

autor
  • Punjab Agricultural University, Ludhiana-141004, India
autor
autor

Bibliografia

  • Barratt D.H.P., Pullen A. 1984. Control of seed protein accumulation in field bean. Ann. Bot. 54: 31-38.
  • Borisjuk L., Walenta S., Rolletschek H., Mueller-Klieser W., Wobus U., Weber H. 2002a. Spatial analysis of plant development: sucrose imaging within Vicia faba cotyledons reveals specific developmental patterns. Plant J. 29: 521-530.
  • Borisjuk L., Wang T., Rolletschek H., Wobus U., Weber H. 2002b. A pea seed mutant affected in the differentiation of the embryonic epidermis leads to deregulated seed maturation and impaired embryo growth. Development 129: 1595-1607.
  • Chopra J., Kaur N., Gupta A.K. 2000. Ontogenic changes in enzymes of carbonmetabolism in relation to carbohydrate status in developing mungbean reproductive struc tures. Phytochemistry 53: 539-548.
  • Chopra J., Kaur N., Gupta A.K. 2003. Changes in the activities of carbonmetabolizing enzymes with pod development in lentil (Lens culinaris L.) Acta Physiol. Plant. 25: 185-191.
  • Echeverria E., Humphreys T. 1984. In volvement of sucrose synthase in sucrose catabolism. Phytochemistry 23: 2173-2178.
  • Egli D.B. 1994. In : K.J.Boote, J.M.Bennet, T. Sinclair, G.M.Paulsen (Eds). Seed Growth and Development. Physiology and determination of crop yield. Madison, W.I. : Crop Science Society of America, pp. 127-147.
  • Estruch J.J., Beltren J.P. 1991. Changes in invertase activities precede ovary growth induced by gibberellic acid in Pisum sativum. Physiol. Plant. 81: 319-326.
  • Hajirezaei M.R., Takahata Y., Tretheway R.N., Willmitzer L., Sonnewald U. 2000. Impact of elevated cytosolic and apoplastic invertase activity on carbon metabolism during potato tuber development. J. Exp. Bot. 51: 439-445.
  • Jenner C.F., Ugalde T.D., Aspinall D. 1991. The physiology of starch and protein deposition in the endosperm of wheat. Aust. J. Plant Physiol. 18: 211-226.
  • Kerr P.S., Torres W.K., Huber S.C. 1987. Resolution of two molecular forms of sucrose phosphate synthase from maize, soybean and spinach leaves. Planta 170: 515-519.
  • Lowell C.A., Kuo T.M. 1989. Oligosaccharide metabolism and accumulation in developing soybean seeds. Crop Sci. 29: 459-465.
  • Minamikawa T., Yamauchi D., Wade S., Takeuchi H. 1992. Expression of α-amylase in Phaseolus vulgaris and Vigna mungo plants. Plant Cell Physiol. 33: 253-258.
  • Nelson N. 1944. A photometric adaptation of Somogyi method for the determination of glucose. J. Biol. Chem. 157: 375-380.
  • Ross H.A., McRae D., Davies H.V. 1996. Sucrolytic enzyme activities in cotyledons of the faba bean. Developmental changes and purification of alkaline invertase. Plant Physiol. 111: 329-338.
  • Sturm A., Tang G-Q. 1999. The su crose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci. 4: 401-407.
  • Sung S.S., Xu D.P., Black C.C. 1989. Identification of actively filling sucrose sinks. Plant Physiol. 89: 1117-1121.
  • Wang T.L., Hedley C.L. 1993. Casey R., Davies D.R. (Eds) Genetic and developmental analysis of seeds. In Peas: Genetics, Molecular Biology and Biotechnology. Cambridge: CAB International, pp. 83-120.
  • Weber H., Borisjuk L., Heim U., Buchner P., Wobus U. 1995. Seed coat associated invertases of fava bean control both unloading and storage functions: cloning of cDNAs and cell type-specific expression. Plant Cell 7: 1835-1846.
  • Weber H., Borisjuk L., Wobus U. 1996. Controlling seed development and seed size in Vicia faba : a role for seed coat-asso ciated invertases and carbo hydrate state. Plant J. 10: 823-834.
  • Weber H., Heim U., Golombek S., Borisjuk L., Wobus U. 1998. Assimilate uptake and the regulation of seed development. Seed Sci. Res. 8: 331-345.
  • Wobus U., Weber H. 1999. Sugars as signal molecules in plant seed development. J. Biol. Chem. 380: 937-944.
  • Xu D.P., Sung S.J.S., Black C.C. 1989. Sucrose metabolism in lima bean seeds. Plant Physiol. 89: 1106-1116.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-c9c55b46-7464-4c9a-ad34-04d371d368eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.