PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 50 | 1 |

Tytuł artykułu

Drobnoustroje zimnolubne i ich enzymy

Treść / Zawartość

Warianty tytułu

Języki publikacji

PL

Abstrakty

EN
The main role that cold-adapted microorganisms can play at low temperature is biodegradation of organic matter. Some of these microorganisms are pathogenic for plants and animals. Cold-adapted microorganisms cause many problems in the storage of food products. They are also attractive biocatalysts for many biotechnological purposes, because of high activity at low temperatures and increased thermolability. The mechanism of thermal adaptation is insufficiently recognised. The most common adaptations of cold-adapted microorganisms are: elevated flexibility of their molecules, fatty acid composition of membrane lipids, protein conformation and functioning of enzymes. Undoubtedly, better knowledge on the physiology and genetics of cold-adapted microorganisms could be useful for enhancing their metabolic activity in natural environments or in the industry.

Wydawca

-

Rocznik

Tom

50

Numer

1

Opis fizyczny

s.17-30,bibliogr.

Twórcy

autor
  • Uniwersytet Marii Curie-Sklodowskiej, ul.Akademicka 19, 20-033 Lublin
autor

Bibliografia

  • [1] Azuma Y., Newton S.B., Witter L.D. 1962. Production of psychrophilic mutants from mesophilic bacteria by ultraviolet irradiation. J. Dairy Sci. 45: 1529-1530.
  • [2] Baldassare J.J., Brenckle G.M., HoffmanM., Silbert D.F. 1977. Modification of membrane lipid: functional properties of membrane in relation to fatty acid structure. J. Biol. Chem. 252: 8797-8803.
  • [3] Baross J.A., Morita R.Y. 1978. Microbial life at low temperatures: ecological aspects. W: Microbial Life in Extreme Environments (D.J. Kushner, ed.). Academic Press, London: 9-71.
  • [4] Berg G.R., Inniss W.E., Heikkila J.J. 1987. Stress proteins and thermotolerance in psychrotrophic yeasts from arctic environments. Can. J. Microbiol. 33: 383-389.
  • [5] Bhadsavle C.H., Shehata T.E., Collins E.B. 1972. Isolation and identification of psychrophilic species of Clostridium from milk. Appl. Microbiol. 24: 699-702.
  • [6] Brenchley J.E. 1996. Psychrophilic microorganisms and their cold-active enzymes. J. Ind. Microbiol. Biotechnol. 17: 432-437.
  • [7] Collins E.B. 1981. Heat resistant psychrotrophic microorganisms. J. Dairy Sci. 64: 157-160.
  • [8] Davail S., Feller G., Narinx E., Gerday Ch. 1994. Cold adaptation of proteins. Purification, characterization and sequence of the heat-labile subtilisin from the antarctic psychrophile Bacillus TA41. J. Biol. Chem. 269: 17448-17453.
  • [9] Donachie S.P., Zdanowski M.K. 1998. Potential digestive function of bacteria in krill Euphausia superba stmnach. Aquat. Microb. Ecol. 14: 129-136.
  • [10] Donovan W.P., Kushner S.R. 1986. Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA tumover in Escherichia coli K-12. Proc. Natl. Acad. Sci. USA 86: 120-124.
  • [11] Feller G., Narinx E., Arpigny J.L., Aittaleb M., Baise E., Genicot S., Gerday Ch. 1996. Enzymes from psychrophilic organisms. FEMS Microbiol. Rev. 18: 189-202.
  • [12] Fernandez-Astorga A., Hijarrubia M.J., Hernandez M., Arana I., Sunen E. 1995. Disinfectant tolerance and antibiotic resistance in psychrotrophic Gram-negative bacteria isolated from vegetables. Lett. Appl. Microbiol. 20: 308-311.
  • [13] Fiedurek J., GromadaA., Słomka A., Korniłowicz-Kowalska T., Kurek E., Melke J. 2003. Catalase activity in arctic microfungi grown at different temperatures. Acta Biol. Hung. 54:107-112.
  • [14] Gerday Ch., Aittaleb M., Bentahir M., Chessa J.P., Claverie P., Collins T., D' Amico S., Dumont J., Garsoux G., Georlette D., Hayoux A., Lonhienne T., Meuwis A., Feiler G. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18: 103-107.
  • [15] Gounot A.M. 1991. Bacterial life at low temperature: physiological aspects and biotechnological implications. J. Appl. Bacteriol. 71: 386-397.
  • [16] Gounot A.M., Novitsky T.J., Kushner D.J. 1977. Effects of temperature on the macromolecular composition and fine structure of psychrophilic Arthrobacter species. Can. J. Microbiol. 23: 357-362.
  • [17] Griffin H.L., Greene R. V., Cotta M.A. 1992. Isolation and characterization of an alkaline protease from the marine shipworm bacterium. Curr. Microbiol. 24: 111-117.
  • [18] Gügi B., Orange N., Hellio F., Burini J.F., Guillou C., Leriche F., Guespin-Michel J.F. 1991. Effect of growth temperature on several exported enzyme activities in the psychrotrophic bacterium Pseudomonas fluorescens. J. Bacteriol. 173: 3814-3820.
  • [19] Herbert R.A. 1986. The ecology and physiology of psychrophilic microorganisms. W: Microbes in Extreme Environments (R.A. Herbert, G.A. Codd, red.). Academic Press., London: 1-23.
  • [20] Herbert R.A. 1992. A perspective on the biotechnological potential of extremophiles. Trends Biotechnol. 10: 395-401.
  • [21] Howarth C.J., Ougham H.J. 1993. Gene expression under temperature stress. New Phytol. 125: 1-26.
  • [22] Jones P.G., Van Bogelen R., Neidhardt F.C. 1987. Induction of proteins in response to low temperature in Escherichia coli. J. Bacteriol. 169: 2092-2095.
  • [23] Julseth C.R., Inniss W.E. 1990. Heat shock protein induction and the acquisition of thermotolerance in the psychrotrophic yeast Trichosporon pullulans. Curr. Microbiol. 20: 391-396.
  • [24] Kärst U., Schmid R.D., Weyland H.1990. Screening of marine psychrophilic bacteria for extracellular activities. W: 5th Eur. Congr. Biotechnol. Abstract Book (C. Christiansen, L. Munck, J. Villadesn red.). Munksgaard Int. Publ., Copenhagen: 425.
  • [25] Kawalec M., Borsuk P., Piechula S., Stępień P. 1997. A novel restriction endonuclease UnbI, a neoschizomer of Sau96I from an unidentified psychrofilic bacterium from Antarctica is inhibited by phosphate ions. Acta Biochim. Polon. 44: 849-852.
  • [26] Kolenc R.J., Innsiss W.E., Glick B.R., Robinson C. W., Mayfield C.I. 1988. Transfer and expression of mesophilic plasmid-mediated degradative capacity in a psychrotrophic bacterium. Appl. Environ. Microbiol. 54: 638-641.
  • [27] Kotturi G., Robinson C.W., Inniss W.E. 1991. Phenol degradation by a psychrotrophic strain of Pseudomonas putida. Appl. Microbiol. Biotechnol. 34: 539-543.
  • [28] Majeed K.N., Egan A.F., MacRae I.C. 1990. Production of exotoxins by Aeromonas spp. at 5°C. J. Appl. Bacteriol. 69: 332-337.
  • [29] Margesin R., Schinner F. 1992. Production and properties of an extracellular metalloprotease from a psychrophilic Pseudomonas fluorescens. J. Biotechnol. 24: 207-210.
  • [30] Margesin R., Schinner F. 1994. Properties of cold-adapted microorganisms and their potential role in biotechnology. J. Biotechnol. 33: 1-14.
  • [31] McCallum K.L., Heikkila J.J., Inniss W.E. 1986. Temperature-dependent pattern of heat-shock protein synthesis in psychrophilic and psychrotrophic microorganisms. Can. J. Microbiol. 32: 516-521.
  • [32] McGibbon L., Russell N.J. 1985. The tumover of phospholipids in the psychrophilic bacterium Micrococcus cryophilus during adaptation to changes in growth temperature. J. Gen. Microbiol. 131: 2293-2302.
  • [33] Morita K., Hasan Q., Sakaguchi T., Murakami Y., Yokoyama K., Tamiya E. 1998. Marine psychrophilic bacteria. Appl. Microbiol. Biotechnol. 50: 669-675.
  • [34] Marita R.Y. 1975. Psychrophilic bacteria. Bacteriol. Rev. 39: 144-167.
  • [35] Nedwell D.B. 1999. Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microbiol. Ecol. 30: 101-111.
  • [36] Nortje G. L., Nel L., Jordaan E., Badenhorst K., Goedhart E., Holzapfel W. H. 1990. The aerobic psychrotrophic populations on meat and meat contact surfaces in a meat production system and on meat stored at chill temperatures. J. Appl. Bacteriol. 68: 335-344.
  • [37] Olsen R.H., Metcalf E.S. 1968. Conversion of mesophilic to psychrophilic bacteria. Science 162: 1288-1289.
  • [38] Oshima A., Saruyama H., Fukunaga N., Sasaki S. 1980. Effect of temperature on the cell-free-protein-synthesizing system in psychrophilic and mesophilic bacteria. J. Gen. Appl. Bacteriol. 26: 265-272.
  • [39] Poffe R., Mertens W. 1988. Heat stable proteases of psychrotrophic bacteria isolated from cooled raw milk. Appl. Microbiol. Biotechnol. 27: 437-447.
  • [40] Russell N.J. 1990. Cold adaptation of microorganisms. Philosophical Transaction of the Royal Society of London, Series B, 326: 595-611.
  • [41] Schinner F., Margesin R., Pümpel T. 1992. Extracellular protease-producing psychrotrophic bacteria from high alpine habitats. Arctic Alpine Res. 24: 88-92.
  • [42] Stephens J..C., Roberts I.S., Jones D., Andrew P. W. 1991. Effect of growth temperature on virulence of strains of Listeria monocytogenes in the mause: evidence for a dose dependence. J. Appl. Bacteriol. 70: 239-244.
  • [43] Stokes J.L., Redmond M.L. 1963. General biology and nomenclature of psychrophilic microorganisms. W: Recent Progress in Microbiology, University of Toronto Press, Toronto 8: 187-192.
  • [44] Sutherland A.D. 1993. Toxin production by Bacillus cereus in dairy products. J. Dairy Res. 60: 569-574.
  • [45] Święcicka I., Buczek J., Hauschild T. 1997. Psychrofile i psychrotrofy. Post. Mikrobiol. 36: 53-70.
  • [46] Takasawa T., Sagisaka K., Yagi K., Uchiyama K., Aoki A., Takaoka K., Yamainoto K. 1997. Polygalacturonase isolated from the culture of the psychrophilic fungus Sclerotinia borealis. Can. J. Microbiol. 43: 417-424.
  • [47] Tanaka K., Sakai H., Ohta T., Matsuzawa H. 1995. Molecular cloning of the genes for pyruvate kinase of two bacilli, Bacillus psychrophilus and Bacillus licheniformis, and comparison of the properties of the enzymes produced in Escherichia coli. Biosci. Biotech. Biochem. 59: 1536-1542.
  • [48] Ternström A., Lindberg A.M., Molin G. 1993. Classification of the spoilage flora of raw and pasteurized bovine milk, with special reference to Pseudomonas and Bacillus. J. Appl. Bacteriol. 75: 25-34.
  • [49] Turkiewicz M., Gromek E. 2000. Enzymy drobnoustrojów psychrofilnych i ich biotechnologiczne znaczenie. Biotechnologia 1(48): 171-188.
  • [50] Turkiewicz M., Gromek E., Kalinowska H., Zielińska M. 1999. Biosynthesis and properties of an extracellular metalloprotease from the Antarctic marine bacterium Sphingomonas paucimobilis. J. Biotechnol. 70: 53-60.
  • [51] Whitaker J.R. 1990. New and future uses of enzymes in food processing. Food Biotechnol. 4: 669-697.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-c8b29390-8091-4147-b21e-ebd63bd0b6e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.