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ABSTRACT

The study objects were 48 microhabitats of five Utricularia species in Lower and Upper Silesia (POLAND).
The aim of the paper was to focus on application of the Self-Organizing Feature Map in assessment of water tro-
phicity in Utricularia microhabitats, and to describe how SOFM can be used for the study of ecological subjects.
This method was compared with the hierarchical tree plot of cluster analysis to check whether this techniques give
similar results. In effect, both topological map of SOFM and dendrogram of cluster analysis show differences be-
tween Utricularia species microhabitats in respect of water quality, from eutrophic for U. vulgaris to dystrophic
for U. minor and U. intermedia. The used methods give similar results and constitute a validation of the SOFM
method in this type of studies.

KEY WORDS: artificial neural networks, cluster analysis, ecological modeling, trophicity, Utricula-

255

ria, water-quality data.

INTRODUCTION

Global changes in natural ecosystems and rural domestic
areas are the subject of modeling by artificial neural ne-
tworks (ANNSs) (Ray and Klindworth 2000; Jorgensen and
Bendoricchio 2001; Elkamel et al. 2001; Viotti et al. 2002;
Mishra et al. 2004; Lallahem et al. 2005; Sahoo et al. 2005;
Shiva Nagendra and Khare 2005, 2006). They are gaining
greater attention in ecological sciences as a powerful stati-
stical modeling technique, as techniques available in the
fourth generation of ecological models. Researchers use
a lot of methods ranging from numerical, mathematical
and statistical methods to techniques based on artificial in-
telligence, particularly ANN’s. Neural networks are consi-
dered as one of the methods for regression and classifica-
tion problems, and are used in a wide range of applications
to solve various problems (Tadeusiewicz 1993, 1998). The
use of ANNs in modeling is known, as well as their supe-
riority with respect to linear, e.g. Principal Component
Analysis (PCA), Correspondence Analysis (CoA), Polar
Ordination (PO) and hierarchical clustering analysis (Jong-
man et al. 1995; Paruelo and Tomasel 1997; Giraudel and
Lek 2001; Gevrey et al. 2003; Pastor-Barcenas et al. 2005;
Samecka-Cymerman et al. 2007). There are several modi-
fications of ANNs designed for various applications. In an
attempt to cluster and pattern complex nonlinear data, Ko-
honen (1982) designed an ANN for self-organizing map-
ping based on an unsupervised learning algorithm. Accor-

ding to Chon et al. (1996), Haykin (1999), Recknagel
(2001) and Gevrey et al. (2003), Kohonen’s ANN are rou-
tinely used for ordination and visualization of complex
ecological data, and offer an attractive solution to solve
lots of problems in many critical applications, which are
presently used in many modeling tasks. Water ecosystems
act the significant part in all aspects of environment pollu-
tion, which are for many years a problem in many coun-
tries (Hutchinson 1975; Wiegleb et al. 1991; Smith et al.
1999; Bell and Treshow 2002). Changes of water proper-
ties and estimation of water quality are usually difficult be-
cause of their complex physical, chemical parameters and
biological processes (Giimrah et al. 2000; Karul et al.
2000; Ha and Stenstrom 2003), and are not often used to
predict water properties as in other disciplines (Recknagel
and Wilson 2000; El-Din and Smith 2002). According to
Giraudel and Lek (2001) only few works use unsupervised
learning, and more specifically the SOFM algorithm, to re-
veal the relationships between ecological data. We can see
in literature, that this kind of studies on water ecosystems
by means of ANNs are seldomly applied.

The aim of the present study was to use SOFM in ecolo-
gical analysis for modeling of water quality in relation to
Utricularia species, and to compare it with the results of
cluster analysis, putting forward the hypothesis that diffe-
rent chemical properties of waters are an important factor
of occurrence of various species of Utricularia.
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MATERIAL AND METHODS

The studies were carried out in field in the district of Lo-
wer and Upper Silesia (south and south-western Poland).
The objects of investigation were water ecosystems of
Utricularia species. The reservoirs are located between
51°33” and 50°20° N, and 14°42’ and 19°34’ E. Forty eight
microhabitats were selected and the study objects consisted
of five species: U. vulgaris (16 microhabitats), U. interme-
dia (8 microhabitats), U. ochroleuca (9 microhabitats), U.
australis (7 microhabitats) and U. minor (8 microhabitats).
The sixth species U. Bremii has not been taken into acco-
unt, because it’s status of occurrence in Poland is unknown
(Zajac and Zajac 2001).

Water samples were collecled in August 2006. The con-
tents of NO-,, NO-,, NH*,, PO, K*, Ca*?, Mg*?, Na*,
Fe*3, SO'24, tolal hardness of water, organic substance and
pH were analysed according to the principles of Hermano-
wicz et al. (1999). All chemical analyses were carried out
for three samples from each microhabitat, and every sam-
ple in three chemical measuring repetitions. The final re-
sults of measuring are presented as mean values and stan-
dard deviations. On the basis of these results statistical ana-
lyses were performed. The fitting distribution of the empi-
rical data was verified to the normal one by the Shapiro-
Wilk test, which is the most effective and preferred (Conti
et al., 2005). The results showed the compatibility with the
normal distribution. Thus, for the statistical-mathematical
analysis used was ANOVA with the F-test.

For the artificial neural network the SOFM was used
(Kohonen 2001) to classify the microhabitats of Utricularia
species in respect of trophicity expressed in terms of con-
tents of chemical elements. The structure of the SOFM
consists of two layers of neurons connected by weight
(connection intensities). The input layer consisted of 48 in-
put neurons (microhabitats) and every neuron is represent
by 13 chemical elements. On the basis of dataset and the
classical Kohonen’s algorithm the unsupervised training of
the net was performed. The net was initiated by the ran-
dom-Gaussian method. The learning phase has been bro-
ken down into 100 steps (EPOCHSs) for the ordination pha-
se and 1000 steps for the tuning phase. After the learning
phase it was found, by means of the genetic algorithm, that
all the initial data are significant (Goldberg 1989). Finally,
the Kohonen’s network has been created in the form of
a two-dimensional map. The Kohonen’s topological map
8x8 has been designed. Its output layer consisted of 64
neurons. The net was created according to the scheme “the
winner takes all”. The obtained Kohonen’s topological
map showed the neurons or groups of neurons activated by
the particular investigated cases (microhabitats).

The results of SOFM were verified by the amalgamation
method of cluster analysis, to check whether these analyses
give similar results. The same dataset of water properties
was used for classification of microhabitats in respect of
trophicity. For cluster analysis a hierarchical tree plot was
drawn using Ward’s method as distances between clusters
(amalgamation method) and squared Euclidean distance as
distance measures (X, y) = X, (X; - yi)z.

The verification of the obtained results was carried out at
significance level of p<0.05 according to the methods and
principles given by Legendre and Legendre (1998), Sokal
and Rohlf (2003). For numerical analyses, the construction
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of the SOFM and hierarchical tree plot, the program STA-
TISTICA 7.1 (StatSoft, Inc. 2005) was used.

RESULTS AND DISCUSSION

The examined microhabitats were found to be significan-
tly different between the species (Table 1).

According to Vollenweider and Kerekes (1982), Wetzel
(1983), Smith et al. (1999), Anderson et al. (2005), the
chemism of water is reflected by the trophicity status. The
investigations of the analysed species of bladderworts per-
formed by Kosiba (1992a, b; 1993, 1995, 2004), Kosiba
and Sarosiek (1989), Adamec and Lev (2002), Dite et al.
(2006) show a different trophicity of water in accordance
with the particular Utricularia species.

The applied cluster analysis allowed to detect the proper
structure of the dataset. It forms 3 separate groups A,
B and C (Fig. 1).

These groups are differentiated in respect of water che-
mism (Table 1). Extreme positions in the dendrogram are
occupied by microhabitats assigned to subgroup Al and
are characterized by the highest values of K* (mean 1.16),
Ca*? (mean 42.93), Mg*? (mean 8.29), Na* (mean 2.99),
hardness of water (mean 4.61), pH (mean 7.11), and the lo-
west of NO-, (mean 0.02), NO-; (mean 0.68), Fe™ (mean
0.28), SO, (mean 16.07), organic substance (mean 2.48),
in relation to microhabitats of subgroup C2 of an opposite
position with respect to subgroup Al. The microhabitats
from subgroup C2 are characterized by the highest values
of NO, (mean 0.06), NO; (mean 1.22), NH*, (mean 1.21),
Fe*3 (mean 1.08), SO2, (mean 45.01), organic substance
(mean 9.42), and the lowest of K* (mean 0.48), Ca*? (mean
27.05), Mg*? (mean 7.41), Na* (mean 1.46), hardness of
water (mean 3.11), pH (mean 5.57). The contents of PO,
for microhabitats of subgroup Al and C2 are similar and
the means are 0.45 and 0.50, respectively. Microhabitats of
group B make an intermediate group, as regards groups
A and C, of average values of most the chemical water pro-
perties. On that basis it is possible to show the distinct tro-
phicity of the waters analysed. On the basis at the obtained
results and the results of Pip (1984), Weigleb (1991), Stan-
czykowska (1997), Kosiba (2004), the analysed waters are
eutrophic, particularly waters of U. vulgaris microhabitats,
with eutrophicity shifted in the direction to dystrophicity in
U. ochroleuca and U. australis, and dystrophic ones, above
all of U. intermedia and U. minor. It has been also found,
that the differentiation of water properties in species U. mi-
nor and U. intermedia is not large. A higher differentiation
occurs in U. vulgaris, U. ochroleuca and U. australis. But
a much higher differentiation of water properties has been
found between species of Utricularia (Table 1). According
to Seddon (1972), Weigleb (1981), Roy et al. (1992), Ro-
man et al. (2001) the identification of water chemism ma-
kes the grounds for indentification of ecological water ty-
pes and confirms the ecological formations of different water
plant species in respect to water chemistry. Thus, the ana-
lysed microhabitats belong to different types of water in re-
spect of their chemism. Hence, this makes the ground for
identification of ecological formations of different plant
species, and gives the knowledge on trophic requirements
and ecological tolerance of plants (Roman et al. 2001).
Plant species characterized with high ecological tolerance
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nen’s map, which are localized in its center and on the left
of the center. This is caused, among others, by the presence
of the given species in waters characterized by a transitio-
nal trophicity, i.e. from eutrophic to distrophic and also by
other factors like e.g. the complex of microclimatic, physi-
cal, chemical, biological processes as well as the of the ba-
sis-water arrangement (Gumrah et al. 2000; Karul et al.
2000; Ha and Stenstrom 2003). Moreover, the dendrogram
and Kohonen’s map show a different range of ecological
tolerance of Utricularia species in respect to water proper-
ties. According to Spatek (2002), Adamec and Lev (2002),
Kosiba (2004), Dite et al. (2006), individual species of
Utricularia can occur in waters specific or different in re-
spect of chemical properties and biocenotic composition of
habitat. A clear example is the eurytopic species of U. vul-
garis, which is able to adapt to a wide range of water pro-
perties and is therefore widely distributed. It occurs above
all in eutrophic waters and also in eutrophic waters shifted
to distrophic, rarely in distrophic waters (11, 13), whereas
U. minor and U. intermedia are characterized by a narrow
range of tolerance (stenotopic species). These species are
able to adapt to a narrow range of water properties and
occur mainly in dystrophic and eutrophic waters shifted to
dystrophic, more seldom in eutrophic ones (44).

Similar comparative techniques with use of SOFM and
conventional statistical methods (PCA, PO, CoA, NMDS)
were applied by Giraudel and Lek (2001) for ordination of
ecological community, Lee and Scholz (2006) for asses-
sment of SOFM as an alternative methods, performance in-
dicators, for constructed treatment of wetlands with respect
to k-nearest neighbors (KNN) and support vector machine
(SVM), and by Samecka-Cymerman et al. (2006), who
used SOFM and PCA as a tool in classification of the rela-
tion between chemical composition of aquatic bryophytes
and streambeds. These authors prove the importance of
SOFM and recommend it as a good tool in ecological mo-
deling, which can be used in various fields of applied eco-
logy. Our study has shown that the SOFM model is in
a considerable degree similar to the results of cluster analy-
sis used for classification of water ecosystems in respect of
trophicity and the occurrence of Utricularia species.

CONCLUSIONS

1. The obtained results of SOFM are in a large degree
concordant with the universally applied method of cluster
analysis. Both the methods show differences of Utricularia
species microhabitats in respect of water trophicity, from
eutrophic ones for U. vulgaris, characterized by higher con-
tents of of K*, Ca*2, Mg*2, Na*, hardness of water, pH, to
distrophics ones for U. minor and U. intermedia characteri-
zed by higher contents of NO-,, NO-,, NH*,, Fe*?, SO,
organic substance and lower hardness of water and pH.

2. The results of SOFM and cluster analysis are similar,
although there are some difficulties in comparing the diffe-
rent ordination methods, of which SOFM is more usefull in
ecology. The simulation showed the sensitivity to classifi-
cation and demonstrated a more detailed method to identify
waters in relation to trophicity (revealed more groups).
Moreover, it showed the different ecological tolerance ran-
ge of Utricularia species.
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3. The worked out model can be an interesting tool for
identification of water type for other reservoirs and can be
used as a simulation tool to predict the type of water for in-
troduction or reintroduction of water plants. It can be con-
sidered as an alternative to other mathematical and bioindi-
cation methods and is an effective means of modeling.
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