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Abstract. The present study is concerned with 
the application of the methods of stereological analysis 
to the investigation of the structure of agricultural ma- 

terial. The most important issue in the investigation 
of such three-phase media is to account for their 

structure, which is continually changing in the defor- 

mation process, and more precisely the physical pa- 
rameters of the structure such as the size of solid 

phase elements and pores being a complementary 
phase. The study presents examples of the structures 
of agricultural materials (soil, root, grains, potato 

tuber cells) and their changes resulting from the oper- 

ation of external forces. Common features of the ma- 

terials being investigated and resulting search for a 

common method to investigate their structure have been 
stressed here. Determination of the distribution of grain 

size, aggregates, pores and forces in the contact of the 

solid phase elements and the sizes of cells, cell walls 
and their strength parameters is indispensable while ap- 

plying a probabilistic equation to determine the changes 
of medium volume at any time during the deformation 
process. A probabilistic equation for a three-phase, gra- 
nular medium (soil) considering for the function of the 

distribution of structural element sizes has been 
presented as an example. In order to solve the problem 
of empirical determination of such functions a stereo- 
logical analysis has been proposed. Basic assumptions 
of such approach have been presented stressing their 
use for the quantitative characteristics of the solid 
phase element geometry as well as of the geometry of 

the space created by those elements and porosity 
being the substructure of the material being investi- 

gated. Using stereological analysis one can quantita- 

  

tively determine physical parameters describing the three- 

dimensional structure of the object being investigated on 

the basis of the analysis of a flat image. As it is easy to ob- 
tain microscopic images of agricultural materials, it seems 

futunstic to leam such approach. Stereological analysis 

has not, so far, been applied in the investigations of agri- 

cultural materials (except for own investigations of the 
authors). That is why the present study includes the basic 

information and references. 

Keywords: stereology, image analysis, agricultu- 
ral materials 

INTRODUCTION 

One of the most important physical fea- 
tures of the agricultural materials being inves- 

tigated is their structure. There exists a number 

of the definitions of a structure but all of them 

practically determine it a spatial system of solid 

phase elements and a system of pores [14]. 

The structure of agricultural materials 

undergoes continual changes as a result of 

various mechanical interactions, which cannot 

be avoided in contemporary, mechanised agri- 

culture. The problems concerning soil cultiva- 
tion, crop collection and transport, as well as 
the entire processing of crops obtained require 

us to foresee the deformations and damages of 
agricultural media as they lead to substantial 

loss in crops and agricultural production. 

*This work was supported by the State Committee for Scientific Research, Poland, under Grant No. 5 S 306 030 04.
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To this end it is indispensable to know the 

basic dependence stress-strain-time, to deter- 

mine which the classical methods of rheology 

or theory of plasticity are not enough as they 

do not account for the physical parameters of 

the agricultural medium being investigated. 
The structure of agricultural materials cannot 

be compared with simplified, uniform ele- 

ments like cylinders, balls, etc. 

Quickly developing measurement techniques, 

particularly in the field of micromorphological 

research show that the strain processes - shear 

strain, volumetric strain, cracking - have a simi- 

lar course in numerous agricultural media being 

investigated. The common feature of these pro- 

cesses is the dependence on the physical proper- 

ties of a medium being investigated and changes 

in its structure. 
A medium reacts to the operating stress by 

a change in its structure and its subsequent 
states decide about further physical processes 

connected with the displacement of liquids 

and gases and heat flow, as well as mechanical 

strength. The construction of the structure is 

influenced by physical features of individual 

elements, their geometrical configuration, the 

connections between them, density, porosity, 

surface area, elasticity, hardness, etc. 

Previous detailed theoretical and experi- 

mental research of the authors on the common 
mechanics of agricultural materials applying a 

probabilistic approach allowed to foresee the 

changes in medium volume against time dur- 

ing deformation considering the function of 

the distribution of the size of structural ele- 
ments [13,17]. 

Our research on the mechanics of three- 
phase agricultural media required the search 

for methods, which allow for quantitative de- 

scription of the structure of materials being inves- 
tigated. So far, in our research on the experimental 
determination of the function of the distribution 
of structure elements we have obtained promi- 

sing results using stereological analysis [7,10]. 
In the subsequent part of the study we present 

examples of structures and their changes resulting 

from the operation of forces for soil, root, grain (in 
mass) and potato. 

Common properties of such three-phase 
media and a method of their determination as 

the quantitative characteristics of the solid 

phase element geometry as well as of the geo- 

metry of the space created by those elements 

and porosity being the substructure of the in- 

vestigated material. 

Using stereological analysis one can quantita- 
tively determine physical parameters describing 

the three-dimensional structure of the object 

being investigated on the basis of the analysis 

of a flat image. 

SOIL 

Microscopic observations of soil structure, 
especially its changes caused by different cul- 

tivation exertions, indicate that external forces 

may bring about both quantity and aggregates 

shape changes. These forces may also cause 
aggregate disintegration and crushing, aggre- 

gate blocks formation of large density formed 

from smaller aggregates, and the pores filling 

solid phase can not be compared to capillary 

or other geometrical shapes (Fig. 1 and 2 [9]). 

The compound elements of soil structure 

have different quantity and irregular shape. 

They are connected between one another in a 
fairly permanent way. Even small external 

forces cause changes in such a structure; it is 

at the cost of gas phase changes - porosity. In 

the process of deformation, the number of 

solid phase particles contact points into a sec- 
tion unit changes. This causes changes of all 

mechanical quantities. Particle movement of 

such a medium is disordered; irreversible de- 

formations predominate over the reversible 

ones. Moreover, the basic - stress - deforma- 

tion - time dependence can not be recorded by 

means of finite number of deterministic equa- 

tions. Because of assumptions deterministic 

and statistical thermodynamics methods turned 

out to be unuseful for real deformation process 
description [16,17,20]. 

Because of great particle aggregates and 

pore numbers and their quantity, shape and 

configuration varieties, probability methods- 
first applied in soil science - are a correct ways 

of structure analysis [19].
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Fig. 1. Microscopic photos (SEM) of loess soil structure - the left picture and sand soil - the right picture: a - test, b - 

plough, c - cultivator, d - harrow; at two magnifications x50 and x500.
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Fig. 2. Soil particle of the diameter bigger than that of pore, can not displace itself into its inside without the pore 
increasement. 

These methods where also applied in soil 

deformation examination obtaining a new, to- 

tally original soil volumetric deformation equ- 
ation including medium structure [21,22]: 

— 2lEV 
V,= > Vong | E D А 
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where V, - pore volume change versus time, D, 

- particle diameter, V,, - initial k fraction vol- 

ume, EV, - initial & fraction pores average vol- 

ume, ED, - average partical diameter, f_ - 

mean contact stress, p_., - minimal final po- 

rosity, g,(D,) - solid phase partical quantity 

distribution, g,(f) - stress distribution in parti- 

cal contact points, g,(D „) - maximal pores 

diameters distribution, Ds_.. - minimal partical 

diameter, min (D >» D, | ) - acondition that a 

particle moving to a pore must be smaller than 

its maximum diameter of a pore, (Fig. 2), 

C,(f,,) - normalisation constant. 

Random variables g р 8> and 8; Play an 

important role in the quantitative estimation of 

soil structural changes during deformation. 

They cannot be obtained using traditional 

methods except by image analysis [12]. 

Because of unstable soil structure, the re- 

searches on this structure require sample prep- 

aration. After filling soil pores with a liquid 
substance (glue, resins) and hardening it, one 

may obtain sample intersection (Fig. 3, [7]). 
Bright and dark areas properly referring to 

porous space and soil solid phase constitute ir- 

regular areas with the opposite phase ele- 

ments. Phase borders have a developed area, 

sometimes of low contrast, difficult to unique 

determination. Binary images obtained from 

image analysers increase contrast between the 

phases and eliminate problems of observed 

areas quantitative estimation. 

Connection of soil structure changes with 

external forces that cause these changes, e.g., 

mechanical interactions, requires quantitative 

determinations. Choice of the measured par- 

ameters and kind of measurement from taking 

samples to image analysis becomes the main 
problem of this paper. 

ROOT 

Root and plant system development follows 

in the soil medium. It is directly connected with 
the physical soil condition (Fig. 4, [18]). Soil
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Fig. 3. The loess soil structure - the picture of the polished section from the microscope with the magnification of x350 

and identification of structure obtained by means of automatic image analyser [7].
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Fig. 4. The root system of spring barley in the loess soil profile and their intersections. A - looes soil, B - condensed soil [18]. 

density increasement causes the increase of 

penetration resistance and as a result - root 

length decrease. Such a dependence occurs in 

different depths in soil profile and remains 

through the whole vegetative period. It was 

proved by field experiments of different 

plants, soils and different soil loads. 

The changes of soil physical properties in- 

fluence not only the root length but also its 
structure. The crosswise spring barley root and 

lengthwise corn root intersections indicate 
changes in internal cells shapes and develop- 

ment of compact areas between them. Despite 

cell deformation there occur air spaces and ne- 

crosis areas (Fig. 5 and 6 [1]). 

The structures that consist of such heteroge- 

neous elements regarding contacts between uni- 

tary elements and the reasons causing the 

changes, require quantitative description. 

GRAINS 

Grain arrangement in a silo, a medium of 

distinct anisotropic features, is the next example 

of different structure formation (Fig. 7 [15]). 

The analysis of sample medium intersection 

picture, made in different planes, shows dis- 

tinctive unspherical grain cubic orientation 

and porosity. 

Grain piling up in a definite and control- 
led way leads to concrete structures which de- 
cide about the way of the total mass behaviour 

- both at grain outflow and at the influence on 
the container walls and its bottom. 

The knowledge of anisotropy and physical 

elements features of such a medium allows for 
forseeing its mechanical characteristics. 

The forces, acting on the grain in the silo 

may also cause surface grain damage and com- 
plicate interactions between the whole structure 

(internal friction). 

POTATO 

In the case of other media such as, e.g., 

potatoes, we deal with piling up into heaps and 

clumbs. A component element size distribu- 

tion is big and random. The forces produced
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Fig. 5. The image of oblong com root intersections with the magnification x400. a - loose soil, b - condensed soil 
[J. Lipiec - unpublished}.
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Fig. 6. Oblong corn root intersections in conditions: a - oxygen free, b - oxygen. Visible air-spaces between cells [1].
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Fig. 7. Intersection photos of cylindrical sample of rye grain. 

Intersections obtained in 3 different planes H, V, I, [15]. 

during the storage and transport are consider- 

able and lead to a bulb damage. The damages 

are not always visible. They often occur inter- 

nally, on the cell level and only in the further 

stage they lead to crop loss. Microscopic ana- 

lysis allows for identification of potato sample 
cell structure (Fig. 8 and 9 [12]). 

Confocal scanning reflected light micro- 

scope enables observations on unprepared sam- 

ples in real time. It allows for cell structure 

changes recording at the presence of external 
forces and numerical processing of the ob- 

tained discontinuous images of the examined 
process course (e.g., cracking). 

PROBLEMS OF THE EXAMINED STRUCTURE 
QUNTITATIVE DESCRIPTION 

All the examined agricultural material 

Structures are characterised by: 

- discreet homogenous structure, 

- random character of the physical processes 

that occur in them. 

The examined structures constantly change 

in time, and in practice we deal with several 

instantaneous states. These states decide about 
the repeated courses of physical processes. For 

the quantitative description of such structures, 
it is necessary to introduce probability approach 

together with the whole procedure of physical 
parameters determinations as random variable. 

In the case of soil loose media it is necessary 

to determine grain size, aggregates, pores and 

forces in solid phase element contacts distribu- 
tion. In the case of fibrous and cell structures - 

cell sizes, cell walls, fibres and their resistance 

parameters. 

STEREOLOGICAL ANALYSIS OBJECT 

The previous chapters imply that the 

following individual objects can be the sub- 
ject of geometrical characteristics: plant 

cells, crop grains and clumbs, soil particles 

and their aggregates. In the stereological 

analysis method description, the individual 

objects that occur individually or form dif- 

ferent structures will be called - bodies or grains. 

They will be treated as convex geometrical
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Fig. 8. Fine details of potato cell walls shape in optical scannning microscope. Magnification x500 [12]. 

  
Fig. 9. Cross section of potato tissue in optical scanning microscope. Magnification x500 - a, x1000 - b [12].
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objects. The main object of stereological ana- 

lysis is the quantitative characteristics of: 

- individual grain geometry, 

- geometrical, three dimensional structure of 
compact material, formed by a definite 
grain collections. 
Agricultural materials can be built of one 

or several component grains. These form the 
so called material skeleton. The skeleton does 

not always fill the 3D area that is enclosed by 

material or its sample. Pores are the filling 
components. They can form different space 

configurations. There are two configurations 

that are most frequently distinguished: isolated 

pore system and connected pore system. The 

material porosity forms one of its possible 

substructures. 

Traditional grain size analysis was con- 

cerned with characterizing geometrical fea- 

tures of individual grains or grain collections 

that created loose material. The modern grain 

size analysis also includes quantitative estima- 

tion of compact material space structure. Stereo- 

logical analysis is one of the grain size analysis 

method. Depending on the kind of the solving 

problems, stereological analysis is the main 

relatively adventive completing grain size ana- 

lysis method. Agrophysics development opens 

new areas for stereological analysis applica- 

tions and may influence its progress. 

Stereological analysis applies two methods: 

a projection method (i.e., of shadows) and an 

intersection method. The individual grain ge- 

ometrical characteristics is mostly based on 

the projection method, 1.e., collection informa- 

tion about grains by their shadows geometrical 

features measurement (of width, areas and cir- 

cumferences). Because of the lack of adequate 

measurement devices, the projection method has 

not been widely applied so far. 

In the intersection method we can distin- 
guish planar, linear and point analysis. The 

method is applied for characterizing material 

geometrical structures, and exceptionally for 

individual grain geometry. The information 

source about space structure material is a ge- 

ometrical mosaic of its traces on one or many 

intersections (thin microsections, cutting, pol- 

ished sections etc.), made from the material 

samples. The collected pieces of information 

mostly concern grain intersection area, its cir- 

cumferences length and a number. The linear 

analysis is based on the fact that regular straight 
line lattice is led on sample material intersection. 
Then, we measure chord lengths formed by lines 

with grain cut and count the chords. The point 
analysis is the random or regular point distribu- 

tion on the sample material intersection. We 

count the points falling into the grain cuts that 

belong to individual components. The informa- 

tion which is obtained from the planar, linear or 

point analysis is the basis for some parameters 

quantity estimation which characterize the 

space material structure. 

The essence of the method is that we con- 

clude about the structure features from space 

structure geometrical traces that are visible on 

intersections, lines and points. It is obvious 

that the information obtained this way is much 

more scanty than the information that could be 

obtained by direct space structure presenta- 

tion. That is the reason why the stereogical 

analysis is applied at the moment when we 

cannot make any space penetration without 

damaging the material structure itself. 

The stereological analysis rudiments reach 

half of the XIX century. Then, Dellse - the French 

mineralogy scientist noticed that the volume 

proportions of the individual minerals forming 

a rock are the same as their microsections sec- 

tions area proportions. From the beginning of 

the 1960, we notice the connection of stereo- 

logical and image analysis method develop- 

ment. The available automatic devices possess 

an ample software and allow for efficient stereo- 

logical analysis of simple structures. But the 

proper analysis understanding must be based on 

its mathematical fundamentals. 

BASIC FUNCTIONALS OF CONVEX BODIES 

Let G be a geometrical body. If for every 

couple of points P,, P, € G segment P,P, 

€ G, then G is called convex body. Ellipsoids, 

rectangular prisms and cylinders are the exam- 

ples of convex bodies. A stake is the example of 

a non-convex body. The functional of convex
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body is the X(G) number assigned to this 
body. X(G) functional is called the basic func- 

tional in Hadwiger’s sense [11] if it possesses 

invariance property considering movement 

group in space additivity and monotonous. 
The following examples are the basic func- 
tionals: volume V(G) [2], area S(G) [2], total 

average curvature M(G) 1], total Gaussian 

curvature C(G) (0. 

The polyhedron total average curvature is 

determined by the formula: 

1 1 M == Уи. (1) 

where /, - i-th polyhedron edge length, k, - 

angle formed by normals to the walls crossing 

along i-th edge. 

The total average curvature of smooth body 

limited by the formula: 

(2) 

where R,, R, - main curvature radii in the point 

of body area. 

The total cubicoid curvature is equal: 

M=TI(/,+/,+1,), for the sphere, M=2IID. 

The total convex body average curvature has 

simple geometrical interpretation. If D p, deter- 

mines the so called Feret's [3], body diameter, 

1.e., its average width, then the following rela- 
tionship proceeds: 

M = 2nD,, (3) 

in which the factor of proportionality does not 

depend on body in the convex body class. The 

polyhedron total Gaussian curvature [11] is 

determined by the formula: 

C= Y'e,, (4) 

where €, - space angle formed by the normals 

to the walls converging in i-th corner. The 

total Gaussian curvature of the smooth body of 

C’ class surface is determined by the formula: 

c=| J aR | (5)   

The total Gaussian curvature of every con- 
vex body is constant and equals C = 4II. 

Up to the Hadwiger’s theorem [11], every 

basic functional of convex G body can be 

presented as follows: 

X(G) = aC(G)+ŁM(G)+cS(G)+dV(G) (6) 

but the factors a, b,c, d,= 0 do not disappear 

simultaneously; they are uniquely assigned to 

the body. 

The convex body class also includes the 

so called degenerated bodies. The following 

ones belong to them: 
- common part of GE #0 body G and of E 

plane, i.e., smooth convex figure. Its basic 

funcionals are: 

V(GE) =0, S(GE) = 2s(GE), 

M(GE) = (¥2)I(GE), C(GE)=4n (7) 

where S(GE) and (GE) are: area and circum- 

ference of the smooth figure GE. 

- common part of GL #0 of body G and of L 

straight line is a segment. The basic seg- 
ment functionals are: 

V(GL)=0, S(GL)=0, 

M(GL) = nt(GL), C(GL) = 4n , (8) 

where £(GŁ) stands for segment length. 

- common part GA # 0 of body G and point A 
is point. Its basic functionals are: 

V(GA) =0, S(GA)=0, 

M(GA) =0, C(GA)=4n. (9) 

REMARKS ON STEREOLOGICAL 
ANALYSIS BASIS 

As it was mentioned before, stereological 
analysis is based on projections and intersections 

method. The projection method mathematical 
bases are the so called Cauchy’s projection for- 

mulae [11]: 

M= > [o~dn, M= == | Kn)dn, 

= =] o(n)dn . (10)
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Their forms are important for a convex 2 1 (12) 

body. In the formulae (10) - b(n) stands for G F = 1 | dL, V= on | t(GL)dL . 
GL#0 GL+40 body width to n direction, i.e., distance be- 

tween the planes with normal vector n 

planes that support body G from up and 

down; /(n) and o(n) adequately for circum- 

ference length and body G perpendicular 

area into the plane of normal vector n; dn in- 

dicates a differential of solid angle spread 

out around direction n. Integration spreads 

over into the whole 4II solid angle. By 

means of the formulae (10) only M (in two 

ways) and S can be determined. The projec- 

tion does not provide a relationship for deter- 

mining body volume. This functional should be 

determined by other methods. 

Crofton’s formulae [2,11] are the mathe- 

matical basis of the intersection method. Lets 

start with the planar analysis. We will consider 

geometrical information included in the set of 

all common parts GE #0 of body G and of 

plane E . The formulae (7) show that three of 

the basic functionals SE are not identically 

equal 0. They constitute a basis for deriving the 

first three Crofton’s formulae: 

M=| dE, S=< | KGEJdE, 
>= СЕ»0 

vet S(GE)dE (11) 
27 сво 

The differential dE = dndp, where dn 

stands for the elementary three solid angle, 

spreads around normal vector n to plane E. dp 

is elementary displacement of the plane E 

movement along this vector. Integration 

spreads over all the plane E positions with 

GE #0. The formulae (11) indicate that we 

can determine three functionals of our body G 

from the information obtained on flat intersec- 

tions (number of sections, their circumferences 

lengths and their area). In the linear analysis we 

consider the information included in the set of 

common parts GL # 0 body G and straight line 

L. The formulae (8) show that we can base on 

two functionals, and then we obtain the next 

two Crofton’s formulae: 

The differential dL = dndp, where dn is 

the elementary solid angle around directional 

vector n of straight line L. dq is the elementary 

area determined by straight line L on the plane 

that is perpendicular to the line. Integration 

spreads over all the straight line L positions in 

the space with GL = O. In the point analysis we 

consider information included in the common 

part of body G and point A. This is point A. 

The formulae (9) show that we have only one 

functional of positive value. Then we obtain 

the last Crofton’s formula: 

V= |da. 
GA=0 

(13) 

The differential dA = dpdq, and presents 

elementary volume determined by the point A. 

The integration spreads over all the point A 

positions with GA ź 0. By means of point ana- 

lysis we can only determine the volume of 

body G. On the integration ground, prob- 

abilistic sense can be added to the above, in- 

troduced differentials dE, dL, dA. They 

determine the principle called: plane; straight 

line and point respectively isotropic uniform 

random distribution (TUR density). Such of in- 

terpretation differentials in the formulae (11)- 

(13) gives the way to the introduction of the 

concept of unknown estimators [V,S,M] of 

body G - that is the introduction of mathemati- 

cal statistics - in a practical situation, when we 

do not have full sets GE, GL, GA but we have 

only their finite number and we cannot direct- 

ly use the formulae (11)-(13). Let’s assume 

that we have two convex bodies G and G,, but 

body G is included in Go. Apart from it, the 

position of body G is optional. Let’s ask what 

is the probability of cutting body G by the 

plane E under the condition that the plane 

crosses the body Gy; that is symbolically 

signed: Pr{ GE#0|G,E#0}. Analogical 

question can be put forward as for hitting body 

С by straight line L or point A. Considering 

the principle of random isotropic density of
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planes, straight lines and points in space, 1.e., 

relying on some of the Crofton’s formulae 

(11)-(13) we obtain: 

Pr(GEe0lGEx0}=~-, © 
0 

Pr | GL=0|G,L*0)=<>, (15) 
0 

Pr | GA20| GA 20) =q>. (16) 

Being aware of these simple relationship 

one can prevent from introduction of intersec- 

tion distribution principles in material samples 

by the simultaneous application of estimators 

based on the formulae (11)-(13). This is the 

essence of Bertrand’s paradox. 

INDIVIDUAL GRAIN GEOMETRICAL 
CHARACTERISTICS 

Size and shape are the basic space attributes 

of an individual grain. The statement that the 

class of geometrically congruent grains is the 

set of grains of the same size, and another 

statement that the class of geometrically simi- 
lar grains is the set of grains of the same shape 

- express intuitive understanding of size and 
shape grain concept. Together with technology 

development, there increases the need of size 

and shape quantitative estimation introduction 

for individual grain belonging to wider set 

than the similar grain class. 

Only in some cases the grain name uniquely 

informs about grain shape, e.g., a sphere or a 

cube. But for cuboid shape characteristic it is 

necessary to give proportions of edge length. 

Here we will present the proposal formed in 

the paper [5] that concerned the introduction 

of convex grain shape and size natural charac- 

teristics based on the basic grain funcionals. In 

this proposal, grain size stands not for one but 

for three numbers: | 

[V,S,M] or [V,S,D,,], (17) 

where D,, stands for Feret’s diameter (see Eq. 

(3)). Consequently the so called Blaschke’s 

coefficient couple should be considered as 

grain shape quantitative characteristics [10]: 

S 18S 
XA=4N"z=——, 

M UD, 

У бу 

» М’ пр. 

satisfying the inequalities: 

O<x<l, O<y<1, O<ysx’. (19) 

Here we will not consider all the grain shape 

and natural size characteristic properties. We 

will only present two favourable points: 

- characteristic is based on basical grain 

functionals, 

- characteristic easily allows for noticing all 

the difficulties faced at determining grain 

shape and size notions. 
These definitions lack mutual unambi- 

guity consisting in the fact that if exactly one 

triple of numbers (17) corresponds to every 

convex grain and, in consequence, one pai of 

Blaschke’s coefficients (18) then exactly one 

grain, infinitely many grains, and even no con- 

vex grain at all may correspond to the selected 

triple of positive numbers (17). Hadwiger [10] 
mentions characteristic example of cone and 

cylinder - the bodies of different shapes but of 
the same triple value [17]. We can put forward 

the agreement that by means of finite parame- 

ters number we cannot introduce unique shape 

and size grain definitions in the sense above 

suggested. 

Geometry deals with problems even of the 

individual body of unique characteristics. It 

uniquely characterizes them within the same 

similarity class. Analogical situation occurs in 

the case of material structure quantitative ge- 

ometrical estimation. The unique geometrical 

structure characteristics can be given within 

the same similarity class. 

In the natural shape and size grain charac- 

teristics there are 3 functionals [V,S,M] of con- 
vex grain. Relying on projection method, 

Cauchy’s formulae give the bases for determin- 
ing only $ and M. Volume V must be determined 

by means of another method. Unfortunately, the 

projection method faces practical application 

difficulties because of the devices shortage
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[4,8]. In specific situations, when we have a 

congruent grain number we can apply inter- 

section method, and Crafton’s formulae esti- 

mators (11)-(13) for determining the above 

mentioned functionals triple. But then, we 

should additionally know the so called ‘spe- 

cific grain number’. 

CHARACTERISTICS OF GRAINED MATERIAL 
GEOMETRICAL STRUCTURE 

Material can be made of one or many 

components grains.The consideration will be 

limited to the 2-component material. Soil can 

be the example of such a material if the solid 

phase particles are considered as one compo- 

nent, whereas pores as the second component. 

It may happen that in the multiple material 

analysis (e.g., polymineral rock), we are only 

interested in the structure formed by grains of 

one component. Then, all the other components 

are treated as the so called ‘matrix’. Let’s con- 

sider the sample of material that fills 3D re- 
gion R of volume Vp: Let’s determine by (У. 5» 

M,) i= 1,....N, volume, surface area and total 

mean curvature of i-th grain that is in the re- 

gion R. Quantities described by the formulae: 

у. x $, 

=——, 8,= у, у, v у, 
    

(20) 
  

are the set of basic parameters that charac- 

terize 2 component material structure but the 

second component is treated as so called “ma- 

trix’. We call them as: V, - volumetric ratio or 

specific volume, S,, - specific surface area, M, - 

specific total mean curvature, N, - specific 

quantity of the chosen component. 
The word ‘specific’ informs that the defined 

parameters are mean value per volume unit of 

the sample R of a material. Basing oneself on 

the intersection method, i.e., on Crofton’s 

formulae set (11)-(13) - stereological ana- 

lysis gives estimators of unknown parame- 

ters V „S, „M. They are compiled in the Table 1. 

The set of four parameters (20) is considered 

as grained materials quantitative structure 
basic characteristics. Crofton's formulae (11)- 

(13) do not give any basis for determining esti- 

mator of N . So far it has been impossible to 

derive an estimator of this parameter assuming 

grain convexity on the basis of the information 
obtained on non correlated intersections. 

Total characteristics knowledge (Eq. (20)) 

allows for derivative characteristics introduc- 

tion. A set of derivative parameters: 

у, Sy M, 1 

М, М,’ М," 

presents volume, surface area, and total mean 

curvature of the chosen grain component on 

the average per grain. The next derivative pa- 

rameters set in relation to (20) is the set: 

1 Sy M, N, 

> | у, у, 

which presents total mean curvature and the 

number of the given component grains on the 

average per volume unit of this component. It 

is characteristic that the sets of (21) and (22) 

parameters are independent of packing of 

grains of the chosen component in the space. 

It is worth mentioning that sets of (20) and 

(22) parameters show other aspects of space 

structure although they are based on the same 
information sets. 

  (21) 

  (22) 

CONCLUSION 

Agrophysics is more and more interested 

in stereological analysis. Generally, these are 

the attempts of the verification of method use- 
fulness already applied in rock mechanics or 

in biology, and also looking for new solutions 

for specific agrophysics problems. 

Only the introduction into stereological ana- 
lysis geometrical basis was presented above. 

The considerations were limited to the convex 
bodies as elements of geometrical structure. 

For example estimators У». 5, compiled in
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Table 1. A basic parameters estimators that characterize the grained material structure 

  

  

  

Size Definition Estimators from stereological analysis 

planar linear point 

Specific volume LV, 13 55, [2 Zt, [l zł 

у, Va 3 TP тп Z 6 
Specific surface area 25; [2 4 2411 gn 

Sy Ve D3 П $ 12 ГП 

Total specific mean =M, [1 m 10 
curvature — — 211 $ 12 
M, V I 

Specific quantity WN; 1° 

N Ув 13 
v 

Explanation: LV. , 55, , УМ; , N - total: volume, surface area, total mean curvature and grains number in material sample 

of volume V, , ZS. , Х/; „т - total: area, sircumferences length and number of grain sections in the surface area intersec- 

tions of S , 4, , n - total: chords length and their number on measurement line of £ length; z, Z - number of points hitting 

the component and total points number. 

Table | preserve their importance for non-con- 

vex bodies. 

The structure estimation can be con- 

sidered in another way. Structure charac- 

teristics (number, function) is ‘the answer’ of 

the structure itself for the ‘analysing element’. 

So far, we applied the following analyzing ele- 

ments: plane, straight line, point. There can be 

other:planes, straight lines, points couples or a 

segment. So, the information of geometrical 

structure do not have to be limited to the set of 

common structure parts and plane, straight line 

or point. The information can be also derived 

from the neighbouring of plane, straight-line 
or a point. 
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