PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 15 | 2 |

Tytuł artykułu

The physiological and morphological phenotype of a yeast mutant resistant to the quaternary ammonium salt N-[dodecyloxycarboxymethyl]-N,N,N-trimethyl ammonium chloride

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We investigated the action of the quaternary ammonium salt (QAS) called IM (N-(dodecyloxycarboxymethyl)-N,N,N-trimethyl ammonium chloride) on Saccharomyces cerevisiae yeast cells. Changes in the yeast cell ultrastructure were confirmed by electron microscopy. We treated resistant mutant cells with QAS, and confirmed destruction of the mutant cytoplasm, an increase in the thickness of the cell wall, separation of the cell wall from the cytoplasm, and the accumulation of numerous lipid droplets. We also observed a relatively high production of lipids in the cells of the parental wild-type strain Σ1278b and in its IM-resistant (IMR) mutant in the presence of the QAS. The IMR mutant showed increased sensitivity to CaCl2 and SDS, and resistance to ethidium bromide, chloramphenicol, erythromycin and osmotic shock. It also tolerated growth at low pH. We suggest that the resistance to IM could be connected with the level of permeability of the cell membrane because the IMR mutant was sensitive to this compound in vivo in the presence of SDS and guanidine hydrochloride, which cause increased permeability of the cell plasma membrane.

Wydawca

-

Rocznik

Tom

15

Numer

2

Opis fizyczny

p.215-233,fig.,ref.

Twórcy

autor
  • University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
autor
autor

Bibliografia

  • 1. Xiao, Y., Chen, J., Fang, M., Xing, X., Wang, H., Wang, Y. and Li, F. Antibacterial effects of three experimental quaternary ammonium salt (QAS) monomers on bacteria associated with oral infections. J. Oral Sci. 50 (2008) 323-327.
  • 2. Thorsteinsson, T., Masson, M., Kristinsson, K.G., Hjalmarsdottir, M.A., Hilmarsson, H. and Loftsson, T. Soft antimicrobial agents: Synthesis and activity of labile environmentally friendly long chain quaternary ammonium compounds. J. Med. 46 (2003) 4173-4181.
  • 3. Massi, L., Guittard, F. and Geribaldi, S. Quaternary bisammonium fluorosurfactants for antimicrobial devices, Progr. Colloid Polymer Sci. 124 (2004) 190-193.
  • 4. Mc Donnell, G. and Russell, A.D. Antiseptics and disinfectants activity, action and resistance. Clin. Microbiol. Rev. 12 (1999) 147-179.
  • 5. Kourai, H., Yabuhara, T., Shirai, A., Maeda, T. and Nagamune, H. Syntheses anitimicrobial activities of a series of new bis-quaternaty ammonium compounds. Eur. J. Med. Chem. 41 (2006) 437-444.
  • 6. Denyer, S.P. Mechanism of action of antibacterial biocides. Int. Biodeterior. Biodegrad. 36 (1995) 227-245.
  • 7. Ohkawa, K., Kim, H. and Lee, K. Biodegradation of electrospun poly (e-caprolactone) non-woven fabrics by pure-cultured soil filamentous fungi. J. Polym. Env. 12 (2004) 211-218.
  • 8. Lee, C. Structure, conformation and action of neuromuscular blocking drugs. Br. J. Anaesth. 8 (2001) 7755-7769.
  • 9. Koyama, K. and Shimazu, Y. Benzalkonium chlorides. Drugs and Poisons in Humans 23 (2005) 407-413.
  • 10. Debbash, C., de Saint Jean, M., Pisella, P.J., Warnet, J. and Baudouin, C. Quaternary ammonium cytotoxity in a human conjunctinal cell line. J. Fr. Ophtalmol. 22 (1999) 950-958.
  • 11. Petrocci, A.N. Surface-active agents: quaternary ammonium compounds. In: Disinfection, sterilization and preservation. (Block, S.S. Ed.) Lea and Febiger. Philadelpha. 1983, 309-329.
  • 12. Hugo, W.B. and Frier, M. Mode of action of the antibacterial compound dequalinium acetate. Appl. Microbiol. 17 (1969) 118-127.
  • 13. Hugo, W.B. Disinfection mechanisms. In: Principles and practice of disinfection, preservation and sterilization, 3rd ed., (Russell, A.D., Hugo, W.B. & Ayliffe, G.A.J., Eds), Blackwell Science, Oxford. 1999, 258-283.
  • 14. Cabral, J.P.S. Mode of antibacterial action of dodine (dodecylguanidine monoacetate) in Pseudomonas syringae. Can. J. Microbiol. 38 (1991) 115-123.
  • 15. Hiom, S.J., Furr, J.R., Russell, A.D. and Dickinson, J.R. Effects of chlorhexidine diacetate and cetylpyridinium chloride on whole cells and protoplasts of Saccharomyces cerevisiae. Microbios 74 (1993) 111-120.
  • 16. Russell, A.D. Bacterial spores and chemical sporicidal agents. Clin. Microbiol. Rev. 3 (1990) 99-119.
  • 17. Russell, A.D. Activity of biocides against mycobacteria. J. Appl. Bacteriol. Symp. Suppl. 81 (1996) 87S-101S.
  • 18. Springthorpe, V.S., Grenier, J.L., Lloyd-Evans, N. and Sattar, S.A. Chemical disinfection of human rotaviruses: efficacy of commercially-available products in suspension tests. J. Hyg. 97 (1986) 139-161.
  • 19. Springthorpe, V.S. and Satter, S.A. Chemical disinfection of viruscontaminated surfaces. Crit. Rev. Environ. Control 20 (1990) 169-229.
  • 20. Prince, D.L., Prince, H.N., Thraenhart, O., Muchmore, E., Bonder, E. and Pugh, J. Methodological approaches to disinfection of human hepatitis B virus. J. Clin. Microbiol. 31 (1993) 3296-3304.
  • 21. Maillard, J.Y. Mechanisms of viricidal action, In: Principles and Practice of Disinfection, Preservation and Sterilization. (Russell, A.D., Hugo, W.B., Ayliffe, G.A.J. Eds.), Blackwell Science, Oxford, 1999, 207-221.
  • 22. Maillard, J.Y., Beggs, T.S., Day, M.J., Hudson, R.A. and Russell, A.D. Damage to Pseudomonas aeruginosa PAO1 bacteriophage F116 DNA by biocides. J. Appl. Bacteriol. 80 (1996) 540-554.
  • 23. Mitchell, B.A., Paulsen, I.T., Brown, M.H. and Skurray, R.A. Bioenergetics of the staphylococcal multidrug export protein QacA: identification of distinct binding sites for monovalent and divalent cations. J. Biol. Chem. 274 (1999) 3541-3548.
  • 24. Rogers, B., Decottignies, A., Kolaczkowski, M., Carvajal, E., Balzi, E. and Goffeau, A. The pleitropic drug ABC transporters from Saccharomyces cerevisiae. J. Mol. Microbiol. Biotechnol. 3 (2001) 207-214.
  • 25. Kolaczkowski, M., Kolaczkowska, A., Łuczynski, J., Witek, S. and Goffeau, A. In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. Microb. Drug Resist. 4 (1998) 143-158.
  • 26. Yang, Y.L. and Lo, H.J. Mechanisms of antifungal agent resistance. J. Microbiol. Immunol. Infect. 34 (2001) 79-86.
  • 27. Obłąk, E., Lachowicz, T.M., Łuczyński, J. and Witek, S. Comparative studies of biological activities of the lysosomotropic aminoesters and quaternary ammonium salts on yeast Saccharomyces cerevisiae. Cell. Mol. Biol. Lett. 6 (2001) 871- 880.
  • 28. Obłąk, E., Lachowicz, T.M., Łuczyński, J. and Witek, S. Lysosomotropic N,N-dimethyl α-aminoacid n-alkylesters and their quaternary ammonium salts as plasma membrane and mitochondrial ATPases inhibitors. Cell. Mol. Biol. Lett. 7 (2002) 1121-1129.
  • 29. Lachowicz, T.M., Witkowska, R. and Obłąk, E. Amino acid auxotrophy increases sensitivity of Saccharomyces cerevisiae to a quaternary ammonium salt IM. Acta Microbiol. Polon. 39 (1990) 157-162.
  • 30. Lachowicz, T.M., Obłąk, E. and Piątkowski, J. Auxotrophy stimulated sensitivity to quaternary ammonium salts and its relation to active transport in yeast. Bul. Pol. Acad. Sci. Biol. Sci. 40 (1992) 173-182.
  • 31. Obłąk, E., Ułaszewski, S., Morawiecki, A., Witek, S., Witkowska, R., Majcher, K. and Lachowicz, T.M. Quaternary ammonium salt resistant mutants in yeast Saccharomyces cerevisiae. Yeast 5 Spec. Iss. (1989) 273-278.
  • 32. Obłąk, E., Ułaszewski, S. and Lachowicz, T.M. Mutants of Saccharomyces cerevisiae resistant to a quaternary ammonium salt. Acta Microbiol. Polon. 37 (1988) 261-269.
  • 33. Obłąk, E., Adamski, R. and Lachowicz, T.M. pH-dependent influence of a quaternary ammonium salt and an aminoester on the yeast Saccharomyces cerevisiae ultrastructure. Cell. Mol. Biol. Lett. 8 (2003) 105-110.
  • 34. Obłąk, E., Bącal, J. and Lachowicz, T.M. A quaternary ammonium salt as an inhibitor of plasma membrane H+ -ATPase in yeast Saccharomyces cerevisiae. Cell. Mol. Biol. Lett. 5 (2000) 315-324.
  • 35. Obłąk, E., Lachowicz, T.M. and Witek, S. D,L-leucine transport in a Saccharomyces cerevisiae mutant resistant to quaternary ammonium salts. Folia Microbiol. 41 (1996) 116-119.
  • 36. Rucka, M., Oświęcimska, M. and Witek, S. New biocides for cooling water treatment. II. Quaternary ammonium salts derivatives of glycine esters. Envir. Protec. Eng. 9 (1983) 25-31.
  • 37. Reynolds, E.W. The use of lead citrate at high pH as an electron – opaque stain electron microscopy. J. Cell. Biol. 17 (1963) 208-212.
  • 38. Kates, M. Laboratory Techniques in Biochemistry and Molecular Biology. Elsevier, Amsterdam. Vol. 3, part 2, 1986, 106-107.
  • 39. Paściak, M., Ekiel, I., Grzegorzewicz, A., Mordarska, H. and Gamian, A. Structure of the major glycolipid from Rothia dentocariosa. Biochim. Biophys. Acta 1594 (2002) 199-205.
  • 40. Panaretou, B. and Piper, P.W. Plasma membrane ATPase action affects several stress tolerances of Saccharomyces cerevisiae and Schizozaccharomyces pombe as well as the extent and duration of the heat shock response. J. Gen. Microbiol. 136 (1990) 1763-1770.
  • 41. Ogur, M., Roshanmanesh, A. and Ogur, S. Tricarboxylic acid cycle mutants in Saccharomyces cerevisiae. Comparison of independently derived mutants. Science 147 (1965) 1590.
  • 42. Machnicka, B., Grochowalska, R., Boniewska-Biernacka, E., Słomińska, L. and Lachowicz, T.M. Acid excreting mutants of yeast Saccharomyces cerevisiae. Biochim. Biophys. Res. Commun. 325 (2004) 1030-1036.
  • 43. Panaretou, B. and Piper, P.W. The plasma membrane of yeast acquires a novel heat-shock protein (hsp30) and displays a decline in proton pumping ATPase levels in response to both heat-shock and the entry to stationary phase. Eur. J. Biochem. 206 (1992) 635-640.
  • 44. Viegas, C.A., Sebastiao, P.B., Nunes, A.G. and Sacorreia, I. Activation of plasma membrane H+-ATPase and expression of PMA1 and PMA2 genes in Saccharomyces cerevisiae cells grown at supraoptimal temperatures. Appl. Environ. Microbiol. 61 (1995) 1904-1909.
  • 45. Coote, P.J., Jones, M.V., Seymour I.J., Rowe, D.L., Ferdinando, D.P., McArtur, A.J. and Cole, M.B. Activity of plasma membrane H+ -ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae. Microbiology 140 (1994) 1881-1890.
  • 46. Shin, D.Y., Matsumoto, K., Iida, H., Uno, I. and Ishikawa, T. Heat shock response of Saccharomyces cerevisiae mutants altered in cyclic AMPdependent protein phosphorylation. Mol. Cell. Biol. 7 (1987) 244-250.
  • 47. Iida, H. and Yahara, Y. Durable synthesis of high molecular weight heat shock proteins in Go cells of yeast and other eukaryotes. J. Cell. Biol. 99 (1984) 199-207.
  • 48. Russell, A.D. Mechanisms of bacterial resistance to biocides. Int. Biodeterior. Biodegrad. 36 (1995) 247-265.
  • 49. Nikaido, H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264 (1994) 382-388.
  • 50. Ghannoum, M.A. and Rice, L.B. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 12 (1999) 501-517.
  • 51. Guérin-Méchin, L., Leveau, J.Y. and Dubois-Brissonnet, F. Resistance of spheroplasts and whole cells of Pseudomonas aeruginosa to bactericidal activity of various biocides: evidence of the membrane implication. Microbiol. Res. 159 (2004) 51-57.
  • 52. Gupta, A.K., Ahmad, I. and Summerbell, R.C. Fungicidal activities of commonly used disinfectants and antifungal pharmaceutical spray preparations against clinical strains of Aspergillus and Candida species. Med. Mycol. 40 (2002) 201-208.
  • 53. Shirai, A., Sumitomo, T., Kurimoto, M., Maseda, H. and Kourai, H. The mode of the antifungal activity of gemini-pyridinium salt against yeast. Biocontrol. Sci. 14 (2009) 13-20.
  • 54. Walker, G.M. Yeast physiology and biotechnology. John Wiley & Sons Ltd. Chichester, England, 1998, 169-231.
  • 55. Van der Rest, M.E., Kamminga, A.H., Nakano, A., Anraku, Y., Poolman, B., and Konings, W.N. The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis. Microbiol. Rev. 59 (1995) 304-322.
  • 56. Baranowska, H., Polanowska, R. and Putrament, A. Spontaneous and induced non-specific drug resistance in Saccharomyces cerevisia. Acta Microb. Polon. 23 (1979) 181-201.
  • 57. Dubnicková, M., Rezanka, T. and Koscová, H. Adaptive changes in fatty acids of E. coli strains exposed to a quaternary ammonium salt and an amine oxide. Folia Microbiol. 51 (2006) 371-374.
  • 58. Guérin-Méchin, L., Dubois-Brissonnet, F., Hedyd, B. and Leveau, J.Y. Specific variations of fatty acid composition of Pseudomonas aeruginosa ATCC 15442 induced by quaternary ammonium compounds and relation with resistance to bactericidal activity. J. Appl. Microbiol. 87 (1999) 735-742.
  • 59. Kolaczkowska, A., Kolaczkowski, M., Goffeau, A. and Moye-Rowley, W.S. Compensatory activation of the multidrug transporters Pdr5p, Sng2p, and Yor1p by Pdr1 in Saccharomyces cerevisiae. FEBS Lett. 582 (2008) 977-983.
  • 60. Van den Hazel, H.B., Pichler, H., do Valle Matta, M.A., Leitner, E., Goffeau, A. and Daum, G. PDR16 and PDR17, two homologous genes of Saccharomyces cerevisiae, affect lipid biosynthesis and resistance to multiple drugs. J. Biol. Chem. 274 (1999) 1934-1941.
  • 61. Hallstrom, T.C., Lambert, L., Schorling, L., Balzi, E., Goffeau, A. and Moye-Rowley, W.S. Coordinate control of sphingo lipid biosynthesis and multidrug resistance in Saccharomyces cerevisiae. J. Biol. Chem. 276 (2001) 23674-23680.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-c112e4e0-7202-4dfc-98b6-5f5d8a443fb3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.