PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2002 | 44 | 4 |

Tytuł artykułu

Dependence of the photosynthesis quantum yield in oceans on environmental factors

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Statistical relationships between the quantum yield of photosynthesis and selected environmental factors in the ocean have been studied. The underwater irradiance, nutrient content, water temperature and water trophicity (i.e. the surface concentration of chlorophyll Ca(0)) have been considered, utilizing a large empirical data base. On the basis of these relationships, a mathematical model of the quantum yield was worked out in which the quantum yield Φ is expressed as a product of the theoretical maximum quantum yield ΦMAX = 0.125 atomC quanta−1 and six dimensionless factors. Each of these factors fi appears to be, to a sufficiently good approximation, dependent on one or two environmental factors and optical depth at most. The model makes it possible to determine the quantum yield from known values of these environmental factors. Empirical verification of the model yielded a positive result – the statistical error of the approximate values of the quantum yield Φ is 42%.

Wydawca

-

Czasopismo

Rocznik

Tom

44

Numer

4

Opis fizyczny

p.439-459,fig.,ref.

Twórcy

autor
  • Polish Academy of Sciences, Powstancow Warszawy 55, 81-712 Sopot, Poland
autor
autor
autor

Bibliografia

  • Antoine D., André J.M., Morel A., 1996, Oceanic primary production: 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll, Global Biogeochem. Cycles, 10 (1), 56–69.
  • Antoine D., Morel A., 1996, Oceanic primary production: 1. Adaptation of spectral light-photosynthesis model in viewof application to satellite chlorophyll observations, Global Biogeochem. Cycles, 10 (1), 42–55.
  • Babin M., Morel A., Claustre H., Bricaud A., Kolber Z., Falkowski P.G., 1996, Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems, Deep-Sea Res., 43, 1241–1272.
  • Bannister T.T., 1979, Quantitative description of steady state nutrient-saturated algal growth including adaptation, Limnol. Oceanogr., 24, 76–96.
  • Belayev V. I., 1987, Modelling of marine systems, Nauk. Dumka, Kiyev, 200 pp., (in Russian).
  • Bougis P., 1976, Marine plankton ecology, Elsevier, Amsterdam, 355 pp.
  • Cleveland J. S., Perry M. J., Kiefer D.A., Talbot M.C., 1989, Maximal quantum yield of photosynthesis in the northwestern Sargasso Sea, J. Mar. Res., 47 (4), 869–886.
  • Dera J., 1992, Marine physics, Elsevier, Amsterdam, 516 pp.
  • Dera J., 1995, Underwater irradiance as a factor affecting primary production, Diss. and monogr., Inst. Oceanol. PAS, Sopot, 7, 110 pp.
  • Eppley R.W., Sharp J.H., 1975, Photosynthetic measurements in the central North Pacific: the dark loss of carbon in 24-h measurements, Limnol. Oceanogr., 20, 981–987.
  • Falkowski P.G., Kiefer D.A., 1985, Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass, J. Plankton Res., 7, 715–731.
  • Falkowski P.G., Wyman K., Ley A.C., Mauzerall D., 1986, Relationship of steady-state photosynthesis to fluorescence in eukaryotic algae, Biochim. Biophys. Acta, 829, 183–192.
  • Ficek D., 2001, Modelling the quantum yield of photosynthesis in various marine systems, Diss. and monogr., Inst. Oceanol. PAS, Sopot, 224 pp., (in Polish).
  • Ficek D., Ostrowska M., Kuzio M., Pogosyan S. I., 2000b, Variability of the portion of functional PS2 reaction centres in the light of a fluorometric study, Oceanologia, 42 (2), 243–249.
  • Ficek D., Woźniak B., Majchrowski R., Ostrowska M., 2000a, Influence of non-photosynthetic pigments on the measured quantum yield of photosynthesis, Oceanologia, 42 (2), 231–242.
  • Geider R. J., Greene R.M., Kolber Z., MacIntyre H. L., Falkowski P.G., 1993, Fluorescence assessment of the maximum quantum efficiency of photosynthesis in the western North Atlantic, Deep-Sea Res., 40 (6), 1205–1224.
  • Kiefer D.A., Mitchell B.G., 1983, A simple, steady state description of phytoplankton growth based on absorption cross section and quantum efficiency, Limnol. Oceanogr., 28, 770–776.
  • Koblentz-Mishke O. J., Vedernikov V. I., 1977, Primary production, [in:] Ocean biology, M.E. Vinogradov (ed.), Nauka, Moskva, 2, 183–208.
  • Koblentz-Mishke O. I., Woźniak B., Ochakovskiy Yu. E., 1985, Utilisation of solar energy in the photosynthesis of the Baltic and Black Sea phytoplankton, Izd. Inst. Okeanol. AN SSSR, Moskva, 336 pp., (in Russian).
  • Ley A.C., Mauzerall D., 1982, Absolute absorption cross sections for photosystem II and minimum quantum requirement for photosynthesis in Chlorella vulgaris, Biochim. Biophys. Acta, 680, 95–106.
  • Majchrowski R., Ostrowska M., 2000, Influence of photo and chromatic acclimation on pigment composition in the sea, Oceanologia, 42 (2), 157–175.
  • Majchrowski R., Woźniak B., Dera J., Ficek D., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 2000, Model of the in vivo spectral absorption of algal pigments. Part 2. Practical applications of the model, Oceanologia, 42 (2), 191–202.
  • Morel A., 1991, Light and marine photosynthesis: a spectral model with geochemical and climatological implications, Prog. Oceanogr., 26, 263–306.
  • Morel A., Antoine D., Babin M., Dandonneau Y., 1996, Measured and modeled primary production in the northeast Atlantic (Eumeli JGOFS program): the impact of natural variations in photosynthetic parameters on model predictive skill, Deep-Sea Res., 43, 1273-1304.
  • Ostrowska M., 2001, Using the fluorometric method for marine photosynthesis investigations in the Baltic, Diss. and monogr., Inst. Oceanol. PAS, Sopot, 194 pp., (in Polish).
  • Platt T., Gallegos C. L., Harrison W.G., 1980, Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton, J. Mar. Res., 38, 687–701.
  • Platt T., Sathyendranath S., Ulloa O., Harrison W.G., Hoepffner N., Goes J., 1992, Nutrients control of phytoplankton photosynthesis in the Western North Atlantic, Nature, 356, 229–231.
  • Rubin A. B., 1995, Principles of organisation and regulation of primary processes of photosynthesis, OHTI PHC RAN, Moskva, 33, 38, (in Russian).
  • Rubin A.B., Kononenko A.A., Shaitan K. V., Paschenko V. Z., Riznichenko G.Yu., 1994, Electron transport in photosynthesis, Biophysics, 39 (2), 173–195.
  • Smith R.C., Prezelin B. B., Bridigare R.R., Baker K. S., 1989, Bio-optical modeling of photosynthetic production in coastal waters, Limnol. Oceanogr., 34 (8), 1524–1544.
  • Steemann Nielsen E., 1975, Marine photosynthesis, with special emphasis on the ecological aspect, Elsevier, Amsterdam, 141 pp.
  • Vedernikov V. I., Vshyntsev V. S., Demidov A.A., Pogosyan S. I., Sukhanova I.N., Fadeyev V.V., Chekaluk A.M., 1990, Using fluorometric and photometric methods for chlorophyll a studies in the Black Sea in spring 1988, Okeanologiya, 30, 848-854, (in Russian).
  • Webb W. L., NewtonM., Starr R.C., 1974, Carbon dioxide exchange of Alnus rubra: a mathematical model, Ecologia, 17, 281–291.
  • Wolken J. J., 1975, Photoprocesses, photoreceptors, and evolution, Acad. Press, New York, 317 pp.
  • Woźniak B., Dera J., 2000, Luminescence and photosynthesis of marine phytoplankton – a brief presentation of newr esults, Oceanologia, 42 (2), 137–156.
  • Woźniak B., Dera J., 2001, Bio-optical modelling of the photo-physiological properties of marine algae, Proc. Int. Conf. ‘Current problems in optics of natural waters’ (ONW-2001, St. Petersburg), September 25–28, 2001, 39–49.
  • Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 2000, Model of the ‘in vivo’ spectral absorption of algal pigments. Part 1. Mathematical apparatus, Oceanologia, 42 (2), 177–190.
  • Woźniak B., Dera J., Koblentz-Mishke O. I., 1992a, Bio-optical relationships for estimating primary production in the Ocean, Oceanologia, 33, 5–38.
  • Woźniak B., Dera J., Koblentz-Mishke O. I., 1992b, Modelling the relationship between primary production, optical properties, and nutrients in the sea, Ocean Optics 11, Proc. SPIE, 1750, 246–275.
  • Woźniak B., Dera J., Majchrowski R., Ficek D., Koblenz-Mishke O. J., Darecki M., 1997a, ‘IOPAS initial model’ of marine primary production for remote sensing application, Oceanologia, 39 (4), 377–395.
  • Woźniak B., Dera J., Majchrowski R., Ficek D., Koblentz-Mishke O. J., Darecki M., 1997b, Statistical relationships between photosynthesis and abiotic conditions in the ocean – the IO PAS initial model for remote sensing application, Proc. SPIE, 3222, 516–528.
  • Woźniak B., Dera J., Semovski S., Hapter R., Ostrowska M., Kaczmarek S., 1995a, Modelling the relationship between primary production, optical properties, and nutrients in the sea, Stud. i Mater. Oceanol., 68, 91-123.
  • Woźniak B., Ostrowska M., 1990, Composition and resources of photosynthetic pigments of the sea phytoplankton, Oceanologia, 29, 91–115.
  • Woźniak B., Smekot-Wensierski W., Darecki M., 1995b, Semi-empirical modelling of backscattering and light reflection coefficients in WC1 seas, Stud. i Mater. Oceanol., 68 (8), 61–90.
  • Wróblewski J. S., 1989, A model of the spring bloom in the North Atlantic and its impact on ocean optics, Limnol. Oceanogr., 34 (8), 1563–1571.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-bfdf0638-3e32-42cf-9fc1-a6375ee04f2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.