PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 15 | 1 |

Tytuł artykułu

Treatment with TNF-alpha and IFN-gamma alters the activation of SER-THR protein kinases and the metabolic response to IGF-I in mouse C2C12 myogenic cells

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this study was to compare the effects of TNF-α, IL-1β and IFN-γ on the activation of protein kinase B (PKB), p70S6k, mitogen-activated protein kinase (MAPK) and p90rsk, and on IGF-I-stimulated glucose uptake and protein synthesis in mouse C2C12 myotubes. 100 nmol/l IGF-I stimulated glucose uptake in C2C12 myotubes by 198.1% and 10 ng/ml TNF-α abolished this effect. Glucose uptake in cells differentiated in the presence of 10 ng/ml IFN-γ increased by 167.2% but did not undergo significant further modification upon the addition of IGF-I. IGF-I increased the rate of protein synthesis by 249.8%. Neither TNF-α nor IFN-γ influenced basal protein synthesis, but both cytokines prevented the IGF-I effect. 10 ng/ml IL-1β did not modify either the basal or IGF-I-dependent glucose uptake and protein synthesis. With the exception of TNF-α causing an 18% decrease in the level of PKB protein, the cellular levels of PKB, p70S6k, p42MAPK, p44MAPK and p90rsk were not affected by the cytokines. IGF-I caused the phosphorylation of PKB (an approximate 8-fold increase above the basal value after 40 min of IGF-I treatment), p42MAPK (a 2.81-fold increase after 50 min), and the activation of p70S6k and p90rsk, manifesting as gel mobility retardation. In cells differentiated in the presence of TNF-α or IFN-γ, this IGF-I-mediated PKB and p70S6k phosphorylation was significantly diminished, and the increase in p42MAPK and p90rsk phosphorylation was prevented. The basal p42MAPK phosphorylation in C2C12 cells treated with IFN-γ was high and comparable with the activation of this kinase by IGF-I. Pretreatment of myogenic cells with IL-1β did not modify the IGF-I-stimulated phosphorylation of PKB, p70S6k, p42MAPK and p90rsk. In conclusion: i) TNF-α and IFN-γ, but not IL-1β, if present in the extracellular environment during C2C12 myoblast differentiation, prevent the stimulatory action of IGF-I on protein synthesis. ii) TNF-α- and IFN-γ-induced IGF-I resistance of protein synthesis could be associated with the decreased phosphorylation of PKB and p70S6k. iii) The activation of glucose uptake in C2C12 myogenic cells treated with IFN-γ is PKB independent. iv) The similar effects of TNF-α and IFN-γ on the signalling and action of IGF-I on protein synthesis in myogenic cells could suggest the involvement of both of these cytokines in protein loss in skeletal muscle.

Wydawca

-

Rocznik

Tom

15

Numer

1

Opis fizyczny

p.13-31,fig.,ref.

Twórcy

  • Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland

Bibliografia

  • 1. Costelli, P., Tullio, R.D., Baccino, F.M. and Melloni, E. Activation of Ca(2+)- dependent proteolysis in skeletal muscle and heart in cancer cachexia. Br. J. Cancer 84 (2001) 946-950.
  • 2. Fairfield, W.P., Treat, M., Rosenthal, D.I., Frontera, W., Stanley, T., Cocroran, C., Costello, M., Parlman, K., Schoenfeld, D., Klibanski, A. and Grinspoon, S. Effects of testosterone and exercise on muscle leanness in eugonadal men with AIDS wasting. J. Appl. Physiol. 90 (2001) 2166-2171.
  • 3. Minnaard, R., Drost, M.R., Wagenmakers, A.J., van Kranenburg, G.P., Kuipers, H. and Hesselink, M.K. Skeletal muscle wasting and contractile performance in septic rats. Muscle Nerve 31 (2005) 339-348.
  • 4. Pfitzenmaier, J., Vessella, R., Higano, C.S., Noteboom, J.L., Wallace, D. and Corey, E. Elevation of cytokine levels in cachectic patients with prostate carcinoma. Cancer 97 (2003) 1211-1216.
  • 5. Acharyya, S., Ladner, K.J., Nelsen, L.L., Damrauer, J., Reiser, P.J., Swoap, S. and Guttridge, D.C. Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. J. Clin. Invest. 114 (2004) 370-378.
  • 6. De Rossi, M., Bernasconi, P., Baggi, F., de Waal, M.R. and Mantegazza, R. Cytokines and chemokines are both expressed by human myoblasts: possible relevance for the immune pathogenesis of muscle inflammation. Int. Immunol. 12 (2000) 1329-1332.
  • 7. Knobler, H., and Schatter, A. TNF-α, chronic hepatitis C and diabetes: a novel triad. Q. J. Med. 98 (2005) 1-6.
  • 8. Baracos, V.E. Regulation of skeletal-muscle-protein turnover in cancerassociated cachexia. Nutrition 16 (2000) 1015-1018.
  • 9. Pedersen, M., Bruunsgaard, H., Weis, N., Hendel, H.W., Andreassen, B.U., Eldrup, E., Dela, F. and Pedersen, B.K. Circulating levels of TNF-alpha and IL-6-relation to truncal fat mass and muscle mass in healthy elderly individuals and in patients with type-2 diabetes. Mech. Ageing Dev. 124 (2003) 495-502.
  • 10. Figarella-Branger, D., Civatte, M., Bartoli, C. and Pellissier, J.F. Cytokines, chemokines, and cell adhesion molecules in inflammatory myopathies. Muscle Nerve 28 (2003) 659-682.
  • 11. Zoico, E. and Roubenoff, R. The role of cytokines in regulating protein metabolism and muscle function. Nutr. Rev. 60 (2002) 39-51.
  • 12. Zhang, Y., Pilon, G., Marette, A. and Baracos, V.E. Cytokines and endotoxin induce cytokine receptors in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 279 (2000) 196-205.
  • 13. Fernandez-Celemin, L., Pasko, N., Blomart, V. and Thissen, J.-P. Inhibition of muscle insulin-like growth factor I expression by tumor necrosis factor-α. Am. J. Physiol. Endocrinol. Metab. 283 (2002) 1279-1290.
  • 14. Alvarez, B., Quinn, L.S., Busquets, S., Quiles, M,T., Lopez-Soriano, F.J. and Argiles, J.M. Tumor necrosis factor-alpha exerts interleukin-6- dependent and -independent effects on cultured skeletal muscle cells. Biochim. Biophys. Acta 1542 (2002) 66-72.
  • 15. Hirosumi, J., Tuncman, G., Chang, L., Gorgun, C.Z., Uysal, K.T., Maeda, K., Karin, M. and Hotamisligil, G.S. A central role of JNK in obesity and insulin resistance. Nature 420 (2002) 333-336.
  • 16. Musaro, A., McCullagh, K., Paul, A., Houghton, L., Dobrowolny, G., Molinaro, M., Barton, E.R. and Rosenthal, N. Localized Igf-1 trangene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat. Genet. 27 (2001) 195-200.
  • 17. Kim, J.J. and Accili, D. Signalling through IGF-I and insulin receptors: where is the specificity? Growth Horm. IGF Res. 12 (2002) 84-90.
  • 18. Rommel, C., Bodine, S.C., Clarke, B.A., Rossman, R., Nunez, L., Stitt, T.N., Yancopoulos, G.D. and Glass, D.J. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat. Cell. Biol. 3 (2001) 1009-1013.
  • 19. Ciaraldi, T.P., Carter, L., Rehman, N., Mohideen, P., Mudaliar, S. and Henry, R.R. Insulin and insulin-like growth factor-1 action on human skeletal muscle: preferential effects of insulin-like growth factor-1 in type 2 diabetic subjects. Metabolism 51 (2002) 1171-1179.
  • 20. Peruzzi, F., Prisco, M., Morione, A., Valentinis, B. and Baserga, R. Antiapoptotic signalling of the insulin-like growth factor-I receptor through mitochondrial translocation of c-rar and Nedd4. J. Biol. Chem. 276 (2001) 25990-25996.
  • 21. Grzelkowska-Kowalczyk, K. and Wieteska-Skrzeczyńska, W. Exposure to TNF-α but not IL-1β impairs insulin-dependent phosphorylation of protein kinase B and p70S6k in mouse C2C12 myogenic cells. Pol. J. Vet. Sci. 9 (2006) 1-10.
  • 22. Grzelkowska-Kowalczyk, K. and Wieteska, W. The impairment of IGF-Istimulated protein synthesis and activation of protein kinase B, p70S6k, MAP kinase, and p90rsk in mouse C2C12 myogenic cells exposed to high glucose and high insulin. Pol. J. Vet. Sci. 3 (2005) 241-250.
  • 23. Frost, R.A., Nystrom, G.J., Jefferson, L.S. and Lang, C.H. Hormone, cytokine, and nutritional regulation of sepsis-induced increases in atrogin-1 and MuRF1 in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 292 (2007) 501-512.
  • 24. Williamson, D.L., Kimball, S.R. and Jefferson, L.S. Acute treatment with TNF-{alpha} attenuates insulin-stimulated protein synthesis in cultures of C2C12 myotubes through a MEK1-sensitive mechanism. Am. J. Physiol. Endocrinol. Metab. 289 (2005) 95-104.
  • 25. Lang, C.H., Pruznak, A.M. and Frost, R.A. TNFalpha mediates sepsisinduced impairment of basal and leucine-stimulated signalling via S6K1 and eIF4E in cardiac muscle. J. Cell. Biochem. 94 (2005) 419-431.
  • 26. Plaisance, I., Morandi, C., Murigande, C. and Brink, M. TNF-{alpha} increases protein content in C2C12 and primary myotubes by enhancing protein translation via the TNF-R1, PI3K, and MEK. Am. J. Physiol. Endocrinol. Metab. 294 (2008) 241-250.
  • 27. Los, V.T. and Haagsman, H.P.U. TNF-[alpha] inhibits adult fast myosin accumulation in myotubes. Cytokine 35 (2006) 154-158.
  • 28. Petersen, A.M., Plomgaard, P., Fischer, C.P., Ibfelt, T., Pedersen, B.K. and van Hall, G. Acute moderate elevation of TNF-a does not effect systemic and skeletal muscle protein turnover in healthy humans. J. Clin. Endocrinol. Metab. 94 (2009) 294-299.
  • 29. Chen, Y.-W., Shi, R., Geraci, N., Shrestha, S., Gordish-Dressman, H. and Pachman, L.M. Duration of chronic inflammation alters gene expression in muscle from untreated girls with juvenile dermatomyositis. B.M.C. Immunol. 9 (2008) 43-55.
  • 30. Broussard, S.R., McCusker, R.H., Novakofski, J.E., Strle, K., Shen, W.H., Johnson, R.W., Freund, G.G., Dantzer, R. and Kelley, K.W. Cytokinehormone interactions: tumor necrosis factor α impairs biologic activity and downstream activation signals of the insulin-like growth factor I receptor in myoblasts. Endocrinology 144 (2003) 2988-2996.
  • 31. Keller, P., Moller, K., Krabbe, K. and Pedersen, B. Circulating adiponectin levels during human endotoxemia. Clin. Exp. Immunol. 134 (2003) 107-110.
  • 32. Carrol, E., Thomson, A., Jone,s A., Jeffers, G. and Hart, C. A predominantly anti-inflammaroty cytokine profile is associated with disease severity in meningococcal sepsis. Intensive Care Med. 31 (2005) 1415-1419.
  • 33. Frost, R.A. and Lang, C.H. Regulation of muscle growth by pathogen associated molecules. J. Anim. Sci. 86 suppl. 14 (2008) E84-93.
  • 34. Foulstone, E.J., Huser, C., Crown, A.L., Holly, J,M. and Steward, C.E. Differential signalling mechanisms predisposing primary human skeletal muscle cells to altered proliferation and differentiation: roles of IGF-I and TNFalpha. Exp. Cell Res. 294 (2004) 223-235.
  • 35. Tolosa, L., Morla, M., Iglesias, A., Busquets, X,, llado, J. and Olmos, G. IFN-gamma prevents TNF-alpha-induced apoptosis in C2C12 myotubes through down-regulation of TNF-R2 and increased NF-kappaB activity. Cell Signal. 17 (2005) 1333-1342.
  • 36. Smith, M.A., Moylan, J.S., Smith, J.D., Li, W. and Reid, M.B. IFN-gamma does not mimic the catabolic effects of TNF-alpha. Am. J. Physiol. Cell. Physiol. 293 (2007) 1947-1952.
  • 37. Gual, P., Le Marchand-Brustel, Y. and Tanti, J.F. Positive and negative regulation of insulin signalling through IRS-1 phosphorylation. Biochimie 87 (2005) 99-109.
  • 38. De Alvaro, C., Teruel, T., Hernandez, R. and Lorenzo, M. Tumor necrosis factor alpha produces insulin resistance in skeletal muscle by activation of inhibitor kappaB kinase in a MAPK-dependent manner. J. Biol. Chem. 279 (2004) 17170-17178.
  • 39. Medina, E.A., Afsari, R.R., Ravid, T., Castillo, S.S., Erickson, K.L. and Goldkorn, T. Tumor necrosis factor-{alpha} decreases Akt protein levels in 3T3-L1 adipocytes via the caspase-dependent ubiquitination of Akt. Endocrinology 146 (2005) 2726-2735.
  • 40. Yamaguchi, K., Higashiura, K., Ura, N., Murakami, H., Hyakukoku, M., Furuhashi, M. and Shimamoto, K. The effect of tumor necrosis factor-α in tissue specificity and selectivity to insulin signalling. Hypertens. Res. 26 (2003) 389-396.
  • 41. Mourkioti, F. and Rosenthal, N. IGF-I, inflammation and stem cells: interactions during muscle regeneration. Trends Immunol. 26 (2005) 535-542.
  • 42. Frost, R.A., Nystrom, G.J. and Lang, C.H. Tumor necrosis factor-α decreases insulin-like growth factor-I messenger ribonucleic acid expression in C2C12 myoblasts via a Jun N-terminal kinase pathway. Endocrinology 144 (2003) 1770-1779.
  • 43. Khanna, S., Roy, S., Packer, L. and Sen, C.K. Cytokine-induced glucose uptake in skeletal muscle: redox regulation and the role of α-lipoic acid. Am. J. Physiol. Regul. Integr. Comp. Physiol. 276 (1999) 1327-1333.
  • 44. Wieteska-Skrzeczyńska, W. and Grzelkowska-Kowalczyk, K. The impairment of IGF-I-stimulated differentiation of mouse C2C12 myogenic cells exposed to TNF-α, IL-1β and IFN-γ. J. Physiol. Pharmacol. 57 suppl. 2 (2006) 242.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-be6ddf31-d4cd-4a0b-83af-0e1a1868d339
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.