PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 61 | 3 |

Tytuł artykułu

Role of potassium channels in rabbit intestinal motility disorders induced by 2,2'-azobis [2-amidinopropane] dihydrochloride [AAPH]

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Oxidative stress appears to play a role in the pathogenesis of several inflammatory gastrointestinal diseases. Changes in intestinal motility have been reported in different models of intestinal inflammation. The initiating factor of altered motility could be an alteration of gut redox status. The aim of this study was to investigate the effect of oxidative stress evoked by 2, 2´-azobis (2-amidinopropane) dihydrochloride (AAPH) on the intestinal motility of rabbit duodenum and the possible contribution of different K+ channels in mediating this response. Whole thickness segments of rabbit duodenum were suspended in the direction of the longitudinal or circular smooth muscle fibres in an organ bath to study the effects of AAPH alone, or in the presence of different K+ channel blockers on the amplitude, frequency and tone of spontaneous contractions. In circular muscle, AAPH 20 mM induced a reduction of the amplitude, the frequency and tone of the spontaneous contractions. In longitudinal muscle, AAPH 10 mM induced a reduction of the amplitude and tone of the spontaneous contractions. The reduction of the amplitude and tone induced by AAPH was reverted by BaCl2 (1 mM) and TEA (5 mM). Charybdotoxin (100 nM) and iberiotoxin (100 nM) only reverted the reduction of the tone induced by AAPH. In conclusion, our results show that the peroxyl radicals released by AAPH reduced the amplitude and the tone of the spontaneous contractions of the longitudinal smooth muscle from rabbit small intestine. Inward rectifier and intermediate and large-conductance Ca2+-activated K+ channels could be involved in these effects.

Wydawca

-

Rocznik

Tom

61

Numer

3

Opis fizyczny

p.279-286,fig.,ref.

Twórcy

autor
  • Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
autor
autor
autor
autor
autor

Bibliografia

  • Rokutan K, Kawahara T, Kuwano Y, Tominaga K, Nishida K, Teshima-Kondo S. Nox enzymes and oxidative stress in the immunopathology of the gastrointestinal tract. Semin Immunopathol 2008; 30: 315-327.
  • Krzystek-Korpacka M, Neubauer K, Berdowska I, et al. Enhanced formation of advanced oxidation protein products in IBD. Inflamm Bowel Dis 2008; 14: 794-802.
  • Rezaie A, Parker RD, Abdollahi M. Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause? Dig Dis Sci 2007; 52: 2015-2021.
  • Ferencz A, Racz B, Tamas A, et al. Influence of PACAP on oxidative stress and tissue injury following small-bowel autotransplantation. J Mol Neurosci 2009; 37: 168-176.
  • Roessner A, Kuester D, Malfertheiner P, Schneider-Stock R. Oxidative stress in ulcerative colitis-associated carcinogenesis. Pathol Res Pract 2008; 204: 511-524.
  • Glei M, Schaeferhenrich A, Claussen U, et al. Comet fluorescence in situ hybridization analysis for oxidative stress-induced DNA damage in colon cancer relevant genes. Toxicol Sci 2007; 96: 279-284.
  • Yang GY, Taboada S, Liao J. Inflammatory bowel disease: a model of chronic inflammation-induced cancer. Methods Mol Biol 2009; 511: 193-233.
  • Mizuta Y, Isomoto H, Takahashi T. Impaired nitrergic innervation in rat colitis induced by dextran sulfate sodium. Gastroenterology 2000; 118: 714-723.
  • Eskandari MK, Kalff JC, Billiar TR, Lee KK, Bauer AJ. LPS-induced muscularis macrophage nitric oxide suppresses rat jejunal circular muscle activity. Am J Physiol 1999; 277: G478-G486.
  • Van der Vliet A, Bast A. Hydrogen peroxide reduces beta-adrenoceptor function in the rat small intestine. Eur J Pharmacol 1991; 199: 153-156.
  • Gonzalez A, Sarna SK. Different types of contractions in rat colon and their modulation by oxidative stress. Am J Physiol 2001; 280: G546-G554.
  • van der Vliet A, Tuinstra TJ, Bast A. Modulation of oxidative stress in the gastrointestinal tract and effect on rat intestinal motility. Biochem Pharmacol 1989; 38: 2807-2818.
  • Van der Vliet A, Van der Aar EM, Bast A. The lipid peroxidation product 4-hydroxy-2,3-trans-1 nonenal decreases rat intestinal smooth muscle function in-vitro by alkylation of sulphydryl groups. J Pharm Pharmacol 1991; 43: 515-517.
  • Kunze WA, Furness JB. The enteric nervous system and regulation of intestinal motility. Annu Rev Physiol 1999; 61: 117-142.
  • Moghadasian MH, Godin DV. Species-related variations in antioxidant components of gastric and duodenal mucosa. Comp Biochem Physiol B Biochem Mol Biol 1995; 112: 703-709.
  • Muraoka S, Miura T. Protection by estrogens of biological damage by 2,2'-azobis (2-amidinopropane) dihydrochloride. J Steroid Biochem Mol Biol 2002; 82: 343-348.
  • Peluso I, Campolongo P, Valeri P, Romanelli L, Palmery M. Intestinal motility disorder induced by free radicals: a new model mimicking oxidative stress in gut. Pharmacol Res 2002; 46: 533-538.
  • Tamai H, Levin S, Gaginella TS. Induction of colitis in rats by 2-2'-azobis (2-amidinopropane) dihydrochloride. Inflammation 1992; 16: 69-81.
  • Vogalis F. Potassium channels in gastrointestinal smooth muscle. J Auton Pharmacol 2000; 20: 207-219.
  • Liu Y, Gutterman DD. Oxidative stress and potassium channel function. Clin Exp Pharmacol Physiol 2002; 29: 305-311.
  • Lamarca V, Grasa L, Fagundes DS, Arruebo MP, Plaza MA, Murillo MD. K+ channels involved in contractility of rabbit small intestine. J Physiol Biochem 2006; 62: 227-236.
  • Grasa L, Rebollar E, Arruebo MP, Plaza MA, Murillo MD. The role of Ca2+ in the contractility of rabbit small intestine in vitro. J Physiol Pharmacol 2004; 55: 639-650.
  • Jourd'heuil D, Mehta S, Meddings JB. Hemileaflet susceptibility to oxidative damage in the intestinal brush-border membrane. Am J Physiol 1995; 268: G260-G269.
  • Debska-Vielhaber G, Godlewski MM, Kicinska A, et al. Large-conductance K+ channel openers induce death of human glioma cells. J Physiol Pharmacol 2009; 60: 27-36.
  • Liang GH, Park S, Kim JA, Choi S, Suh SH. Stimulation of large-conductance Ca2+-activated K+ channels by the Na+/Ca2+ exchanger inhibitor dichlorobenzamil in cultured human umbilical vein endothelial cells and mouse aortic smooth muscle cells. J Physiol Pharmacol 2009; 60: 43-50.
  • Huang CW, Tsai JJ, Huang CC, Wu SN. Experimental and simulation studies on the mechanisms of levetiracetam-mediated inhibition of delayed-rectifier potassium current (KV3.1): contribution to the firing of action potentials. J Physiol Pharmacol 2009; 60: 37-47.
  • Thengchaisri N, Kuo L. Hydrogen peroxide induces endothelium-dependent and -independent coronary arteriolar dilation: role of cyclooxygenase and potassium channels. Am J Physiol 2003; 285: H2255-H2263.
  • Kourie JI. Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol 1998; 275: C1-C24.
  • Vogalis F, Harvey JR. Altered excitability of intestinal neurons in primary culture caused by acute oxidative stress. J Neurophysiol 2003; 89: 3039-3050.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-bd2a5de9-503f-4885-824e-339045fe5e4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.